
EJB Server User’s Guide

Adaptive Server Enterprise

 12.5

DOCUMENT ID: 33690-01-1250-01

LAST REVISED: June 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, Transact-SQL, Translation Toolkit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book ... ix

PART 1 OVERVIEW

CHAPTER 1 About EJB Server.. 1
 About EJB Server.. 1
Features ... 5

The EJB Server execution engine... 6
Component support ... 7
Network protocol support .. 8
Administration and development tools 9
Client-session and component-lifecycle management 10
Naming services.. 12
Connection caching... 13
Transaction management.. 13
Thread-safety features .. 13
Result-set support ... 14
Permissions and roles ... 15
PowerJ overview ... 15

CHAPTER 2 Getting Started .. 17
Before you use EJB Server .. 17
Terminology and concepts ... 18

Terminology... 18
Concepts ... 19
Developing an application ... 19
The EJB Server runtime environment 20

Basic tasks ... 21
Using the Adaptive Server plug-in to Sybase Central 22
Enabling EJB Server ... 23
Disabling EJB Server .. 24
Starting EJB Server automatically... 25
Starting EJB Server independently ... 25

Contents

iv

Shutting down EJB Servers... 26
Verifying the status of EJB Server... 27

PART 2 INFORMATION FOR DEVELOPERS

CHAPTER 3 Enterprise JavaBeans Overview .. 31
About Enterprise JavaBean components....................................... 32

EJB component types ... 33
EJB transaction attribute values.. 35
EJB container services.. 37

EJB support.. 38
Running EJB components in EJB Server................................ 38
EJB clients connecting to EJB Server 39

CHAPTER 4 Creating Component-Based Applications................................... 41
Application architecture.. 42
Designing the application ... 44
Implementing components and clients... 46
Deploying the application ... 48

Deploying components.. 48
Developing clients ... 49

CHAPTER 5 Understanding Transactions and Component Lifecycles 51
Component lifecycles ... 51
The EJB Server transaction processing model 55

How EJB Server transactions work ... 56
Benefits of using EJB Server transactions 56
Defining transactional semantics... 57
Example .. 63
Dynamic enlistment in Bean-managed transactions 64

OTS/XA transaction model... 66

CHAPTER 6 Working with EJB Packages and Components 69
Packages and Enterprise JavaBean components 69
Importing Enterprise JavaBeans .. 71
Installing components .. 74
Modifying components ... 75
Configuring component properties ... 75

General component properties.. 76
Transactions tab component properties 77
Instances tab component properties 78

Contents

v

Resources tab component properties 80
Persistence tab component properties.................................... 82
All Properties tab ... 84

Generating stubs and skeletons... 86
Creating Enterprise JavaBeans ... 87
Modifying packages ... 93
Configuring package properties ... 94
Exporting packages to EJB-JAR files... 95

CHAPTER 7 Creating Enterprise JavaBean Clients.. 97
Developing an EJB client ... 97
Generating EJB stubs .. 98

Java packages .. 99
Compiling stubs... 99

Instantiating home interface proxies .. 100
Obtaining an initial naming context 100
Resolving Bean home names ... 103

Instantiating remote interface proxies .. 104
Calling remote interface methods .. 106
Managing transactions ... 106
Serializing and deserializing Bean proxies................................... 107

CHAPTER 8 Managing Persistent Component State 109
Persistence for entity Java Beans.. 109

Using component-managed persistence............................... 110
Using automatic persistence ... 110

Persistence for stateful components .. 114
Using Java serialization... 115
Using automatic persistence ... 115

Storage components .. 116
Supported Java, IDL, and JDBC/SQL types 116
Table schema for binary storage.. 117

CHAPTER 9 Developing Applications with PowerJ and EJB Server........... 119
About the development process... 119

Creating workspaces, targets, and classes........................... 122
Designing the user interface.. 125
Designing menus... 126
Accessing data .. 126
Coding application logic .. 127

Building distributed and Web applications that use EJB Server .. 128
About EJB Server.. 128

Contents

vi

Architecture of distributed and Web applications 129
Building EJB Server components with PowerJ 130
Building a Java client for a distributed or Web application 136

Building client/server applications using JDBC 137
Building the application ... 138

Building Enterprise JavaBeans 1.1 components.......................... 141

PART 3 INFORMATION FOR ADMINISTRATORS

CHAPTER 10 Configuring EJB Server .. 145
Configuring an EJB Server... 145

General.. 146
Log/Trace .. 147
Naming Service ... 148
All Properties ... 149

Configuring server stack size ... 151
Character sets.. 152
Shared-memory connections ... 152
Managing connection caches... 153

Creating and installing a new connection cache 153
Modifying connection caches .. 154
Modifying connection cache properties 154
Connection cache refresh ... 157
Connection cache ping.. 158

Managing XA resources... 159
Setting up XA resources.. 159
Creating XA resources .. 160

Configuring Listeners ... 163
Preconfigured listeners.. 163
Configuring listeners.. 163

Replacing an EJB Server ... 165

CHAPTER 11 EJB Server Naming Services.. 167
How does the EJB Server naming service work? 167

EJB Server initial context .. 168
Name binding example.. 169
Transient vs. persistent storage .. 170

JNDI support .. 171
JNDI J2EE features... 171

Configuring the EJB Server naming service 176
Name binding password security .. 177

Using an LDAP server with EJB Server 177

Contents

vii

LDAP object schema and EJB Server objects 178
Storing EJB Server object bindings on an LDAP server 178

Contents

viii

ix

About This Book

This book describes how to create Enterprise JavaBean (EJB) clients and
components for Sybase® EJB Server and Adaptive Server® Enterprise.

Audience This book is intended for EJB component developers, Sybase System
Administrators, and others interested in EJB components.

How to use this book This book will assist you in creating EJB components and clients for
Sybase EJB Server. It contains these parts and chapters:

• Part 1, “Overview,” provides a general description of the EJB Server
and sufficient information to allow you to get started using it. Part 1
contains these chapters:

• Chapter 1, “About EJB Server,” provides an overview of EJB
Server, a summary of EJB Server features, and a description of
Sybase PowerJ.

• Chapter 2, “Getting Started,” describes basic concepts,
terminology, and basic task information you need to use EJB
Server

• Part 2, “Information for Developers,” describes EJBs and presents
information about using the Adaptive Server plug-in for Sybase
Central and PowerJ to create EJB clients and components.

• Chapter 3, “Enterprise JavaBeans Overview,” describes
Enterprise JavaBeans components.

• Chapter 4, “Creating Component-Based Applications”
describes the process of designing, building, and deploying
applications with components executing in EJB Server.

• Chapter 5, “Understanding Transactions and Component
Lifecycles” explains the EJB Server component lifecycle and
transaction processing models.

• Chapter 6, “Working with EJB Packages and Components,”
provides instructions for creating, deploying, and modifying EJB
components and packages.

x

• Chapter 7, “Creating Enterprise JavaBean Clients,” describes how to
implement EJB clients using the Sybase EJB client runtime.

• Chapter 8, “Managing Persistent Component State” describes how to
manage persistence for Enterprise JavaBeans.

• Chapter 9, “Developing Applications with PowerJ and EJB Server,”
gives an overview of how to develop applications using PowerJ and
EJB Server

• Part 3, “Information for Administrators,” describes how to set up and
manage the EJB Server. It also describes the system procedures that
support EJB Server.

• Chapter 10, “Configuring EJB Server,” describes basic configuration
tasks to customize your installation, such as creating new servers,
changing server properties, and defining new connection caches

• Chapter 11, “EJB Server Naming Services” describes how to use
naming services to associate a logical name with an object.

Related documents The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

 About This Book

xi

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Reference Manual – contains detailed information about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains a list of the Transact-SQL reserved words and definitions of
system tables.

• Performance and Tuning Guide – explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issues that affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

• The Utility Guide – documents the Adaptive Server utility programs, such
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

xii

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with X/Open
XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data stored
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• Technical Library CD contains product manuals and technical documents
and is included with your software. The DynaText browser (included on
the Technical Library CD) allows you to access technical information
about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

 About This Book

xiii

• Technical Library Product Manuals Web site is an HTML version of the
Technical Library CD that you can access using a standard Web browser.
In addition to product manuals, you’ll find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select a product from the product pick list and click Go.

3 Select the Certification Report filter, specify a time frame, and click Go.

4 Click a Certification Report title to display the report.

❖ For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing web accounts) or create a new account (a free
service).

3 Specify a time frame and click Go.

4 Select a product.

5 Click an EBF/Update title to display the report.

❖ To create a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

Java syntax
conventions

This book uses these font and syntax conventions for Java items:

xiv

• Classes, interfaces, methods, and packages are shown in Helvetica within
paragraph text. For example:

SybEventHandler interface

setBinaryStream() method

com.Sybase.jdbx package

• Objects and parameter names are shown in italics. For example:

“In the following example, ctx is a DirContext object.”

 “eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

• Java names are always case sensitive. For example, if a Java method name
is shown as Misc.stripLeadingBlanks(), you must type the method name
exactly as displayed.

Transact-SQL syntax
conventions

This book uses the same font and syntax conventions for Transact-SQL as
other Adaptive Server documents:

• Command names, command option names, utility names, utility flags, and
other keywords are in Helvetica in paragraph text. For example:

select command

isql utility

-f flag

• Variables, or words that stand for values that you fill in, are in italics. For example:

user_name

server_name

• Code fragments are shown in a monospace font.Variables in code
fragments (that is, words that stand for values that you fill in) are italicized.
For example:

Connection con = DriverManager.getConnection
("jdbc:sybase:Tds:host:port", props);

• You can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

 About This Book

xv

Additional conventions for syntax statements in this manual are described in
Table 1. Examples illustrating each convention can be found in the System
Administration Guide.

Table 1: Syntax statement conventions

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Key Definition

{ } Curly braces indicate that you choose at least one of the enclosed
options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed options is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of the options
shown.

, The comma means you may choose as many of the options shown
as you like, separating your choices with commas to be typed as
part of the command.

xvi

P A R T 1 Overview

This part provides an overview of the Enterprise
JavaBeans Server (EJB Server) and the information you
need to start using EJB Server.

1

C H A P T E R 1 About EJB Server

This chapter presents an overview of the Enterprise JavaBeans Server
(EJB Server).

 About EJB Server
Enterprise JavaBeans (EJB) Server is a component transaction server. It
supports the EJB server-side component model for developing and
deploying distributed, enterprise-level applications in a multi-tiered
environment. It provides the framework for creating, deploying, and
managing middle-tier business logic.

In a three-tier environment, the client provides the user interface logic, the
business rules are separated to the middle tier, and the database is the
information repository. The client does not access the database directly.
Instead, the client makes a call to the EJB Server on the middle tier, which
then accesses the database.

Topic Page
About EJB Server 1

Features 5

 The EJB Server execution engine 6

 Component support 7

 Network protocol support 8

 Administration and development tools 9

 Client-session and component-lifecycle management 10

 Naming services 12

 Connection caching 13

 Transaction management 13

 Thread-safety features 13

 Result-set support 14

 Permissions and roles 15

 PowerJ overview 15

About EJB Server

2

The three tiers can reside on different machines or on the same machines. EJB
Server is designed to reside on the same machine as the database engines it
serves. Because the servers are on the same machine, EJB Server can
communicate with the database using Adaptive Server’s high-speed, shared-
memory JDBC driver. This approach ensures:

• High-speed communication and data transfer, even for large data sets

• Secure data transmission because the transfer of information from the third
tier to the middle tier does not take place over the network

EJB components (or Beans) are reusable modules of code that combine related
tasks (methods) into a well-defined interface. EJB components contain the
methods that execute business logic and access data sources. You (or the
Administrator) install the component’s executable code on EJB Server. Any
number of independent Java or EJB applications (clients) can use the EJBs.

There are three types of Enterprise JavaBeans: stateful session Beans,
stateless session Beans, and entity Beans. Each type of bean is a set of
methods and is responsible for different tasks on behalf of the client.

All session Bean instances are transient. They maintain a one-to-one
relationship with the client. They perform tasks, and can store information in
the database on the client’s behalf. Stateful session Beans manage complex
tasks that require the accumulation of data. Stateless session Beans manage
tasks that do not store data between method calls. Entity Bean instances are
persistent. They represent underlying objects, typically a particular row in a
database. All three bean types work together to process a request and return
information to the client.

Figure 1-1shows how the client interacts with the EJB Server and the database.

CHAPTER 1 About EJB Server

3

Figure 1-1: EJB Server environment

The stub and the skeleton allow EJB Server to appear to run locally on the
client. Every component instance has its own stub and skeleton created
specifically for it. The stub resides on the client machine and is connected over
the network to the skeleton, which resides on EJB Server. The stub acts as a
surrogate for the client, transmitting requests to the skeleton. The skeleton
listens on an IIOP port for requests from the stub.

When the skeleton receives a request, it determines which method is required
and then invokes that method. Using the Sybase high-speed JDBC driver, EJB
Server sends the request to Adaptive Server. If values are returned, the skeleton
sends them to the stub, which returns them to the client application.

EJB Server provides efficient management of client sessions, threads, third-tier
database connections, and transaction flow, without requiring specialized
knowledge on the part of the component developer. As a consequence,
developers can focus on solving business problems instead of programming the
application’s infrastructure.

Developers use classes and interfaces from the javax.ejb packages of the
JavaSoft API to create and deploy components. To implement a component,
the developer must define interfaces and classes:

Client

Client

Session Beans

Host machine

Entity Beans

EJB Server

Adaptive Server engines

Fi
re

 w
al

l

About EJB Server

4

• Remote interface – defines the Bean’s business methods and extends
javax.ejb.EJBObject.

• Home interface – defines the Bean’s lifecycle methods and extends
javax.ejb.EJBHome.

• Bean class – implements the Bean’s business methods and extends
javax.ejb.EnterpriseBean.

• Primary key – provides a pointer into the Adaptive Server database and
must implement Serializable. Necessary for entity Beans only.

Sybase provides a graphics-based management tool, the Adaptive Server plug-
in to Sybase Central, for EJB Server developers and administrators. From this
graphical interface, developers can deploy components and administrators can
configure the server.

• For detailed information about creating and implementing EJB clients and
components, see Chapter 6, “Working with EJB Packages and
Components.”

• For detailed information about configuring EJB Server, see Chapter 2,
“Getting Started,” and Chapter 10, “Configuring EJB Server.”

Feature summary EJB Server features include the following:

• A scalable, multithreaded, platform-independent execution engine

• Dispatch and stub/proxy support for the EJB component model

• High-speed communication through Adaptive Server shared memory

• Graphical administration with the Adaptive Server plug-in to Sybase
Central

• Easy integration with Sybase PowerJ development environment

• Transparent client-session and component lifecycle management

• Connection caching to allow reuse of database connections

• Industry-standard naming services to resolve components using logical
names rather than server addresses

• Transaction management to simplify the design and implementation of an
application’s transactions

• Transparent thread-safety features to simplify use of shared data and
resources

CHAPTER 1 About EJB Server

5

• Result-set support to enable efficient retrieval of tabular data in client
applications

• Support for Enterprise JavaBeans (EJB) components developed according
to version 1.1 of the Enterprise JavaBeans specification.

The following sections explain these features and describe how EJB Server
works.

Features
EJB Server is for deploying transaction-intensive business applications on the
Internet. These applications move beyond one-way dynamic updates or data
collection to real-time two-way updates of business critical information. You
can also migrate traditional client/server transactional applications to multitier
EJB Server applications.

EJB Server provides a framework for deploying the middle-tier logic of
distributed component-based applications. EJB Server’s high-performance
transaction server provides efficient management of client sessions, threads,
database connections, and transaction flow. EJB Server’s scalability and
platform independence allow you to develop your application on inexpensive
uniprocessor machines, then deploy the application on an enterprise-grade
multiprocessor server.

Client-side logic for enterprise applications must be as small and efficient as
possible to conserve network bandwidth. To accomplish this goal, applications
are partitioned into three parts: presentation logic, business logic, and database
logic. The database resides on the bottom tier of the enterprise system to
maintain and secure the organization's information assets. The business logic
resides in the middle tier. The presentation logic is on the user's desktop, or top
tier, or is dynamically downloaded to the user's desktop.

The EJB Server is responsible for executing and securing the vast majority of
a corporation's business logic. This makes it a critical component in the
emerging network-centric architecture. The Web browser connects to EJB
Server or a Web server via HTTP to download an HTML page containing a
Java applet that performs presentation functionality. The applet communicates
with EJB Server, calling middle-tier components that perform business logic.
Adaptive Server stores, processes, and protects the corporate data. EJB Server
manages a pool of connections to the back-end database, coordinating the
transaction processing to those servers.

Features

6

Components are objects that reside on EJB Server and can be used by many
different programs, regardless of the program’s programming language. A
client executes the methods in a component. Instead of creating one massive
program, you create a client that contains the GUI and validation code and
several individual components that contain the functionality (or business logic)
of your program. By separating the functionality from the GUI, you can easily
upgrade and change the functionality of your program without having to
change the GUI. In addition, multiple clients can use components at the same
time.

The EJB Server execution engine
EJB Server’s runtime engine provides a scalable and platform-independent
environment for the execution of component-based applications. EJB Server is
scalable because it is multithreaded and multiprocessor safe. The EJB Server
execution environment is the same across all platforms.

The EJB Server runtime engine provides these services:

• Network listeners for the connections on which clients send remote
component invocations. EJB Server’s core network server technology is
based on Sybase’s Open Client/Server™ technology.

• An execution environment for middle-tier components.

See “Server-side component support” on page 7.

• A built-in HTTP server. You can use EJB Server’s HTTP support to
deploy your application’s Java applets and HTML pages.

• Ability to run with different Java virtual machines.

• Connection caching. You can define caches of connections for interacting
with databases from EJB Server components.

See “Connection caching” on page 13 for more information.

In addition to these built-in services, you can install service components
that run in the background and provide customized services to clients or
other components.

CHAPTER 1 About EJB Server

7

Component support
Components are reusable modules of code that combine related tasks
(methods) into a well-defined interface. EJB Server components are installed
on an EJB Server and contain the methods that execute business logic and
access data sources. You or your administrator install the component’s
executable code on the EJB Server. Components can be distributed to Adaptive
Server databases residing on the same host. Once installed, components can be
used by any number of independent applications.

Since EJB Server components reside on the server, components do not contain
methods to display graphics or user interfaces—that is, EJB Server
components are inherently nonvisual.

User-interface developers or other component developers can browse a
component’s interface in the Adaptive Server plug-in for Sybase Central; in
their code, they use a client stub or proxy to invoke the component’s methods.
The stub or proxy acts as a local surrogate for the remote component, providing
the same method signatures as the component and hiding the details of server
communication.

EJB Server’s server-side component support and client-side stub or proxy
support are independent. Any EJB Server client can execute any component.
Additionally, since EJB Server uses standard CORBA IIOP as its core network
protocol, you can use CORBA client runtimes from other vendors to invoke
components installed on an EJB Server.

All clients and components share a common interface repository. Component
interfaces are stored in standard CORBA Interface Definition Language (IDL).
Interfaces can be defined by importing compiled Java classes or standard-
format EJB-JAR files.

Server-side component support

EJB Server supports Java components that follow the JavaSoft Enterprise
JavaBeans (EJB) specification, version 1.1. An Enterprise JavaBean is a
nonvisual, transactional component that is implemented in Java.

Chapter 6, “Working with EJB Packages and Components,” describes how to
create EJB components.

Features

8

Client stub/proxy support

Applications invoke an EJB Server component using a stub or proxy object.
The stub or proxy acts as a local surrogate for the remote component; it
provides the same method signatures as the component and hides the details of
server communication. Stubs and proxies are available for:

• Java (EJB) Any component can be invoked via a Java stub class. The
Adaptive Server plug-in generates source code for Java stubs. At runtime,
your client program instantiates the stub. When you call methods on the
stub class, the stub transparently invokes the component method on the
EJB Server. Using HTML pages, Java applets, and EJB Server’s built-in
HTTP support, you can create “zero-install” applications that have no
client-machine installation requirements other than the presence of a Java-
capable Web browser.

EJB Server supports the EJB Java client model.

• EJB Your program uses the JavaSoft EJB (javax.ejb) classes and
EJB Server’s EJB stubs to call EJB Server component methods. This
client model follows the EJB 1.1 Specification.

Chapter 7, “Creating Enterprise JavaBean Clients,” describes how to
implement EJB clients.

Network protocol support
EJB Server supports the following protocols:

• Internet Inter-ORB Protocol (IIOP) IIOP is the standard protocol for
communication between CORBA ORBs over TCP/IP networks. The EJB
client model uses IIOP. IIOP connections can also be tunnelled inside of
HTTP to allow connections through firewalls that do not allow passage of
IIOP traffic, as discussed in “HTTP tunneling support” on page 9.

• Hypertext Transfer Protocol (HTTP) HTTP is used by Web browsers
for file downloads and uploads. EJB Server provides HTTP support to
allow you to deploy HTML pages and Java applets on the EJB Server
itself.

To enable support for IIOP, you must define a listener in the Adaptive Server
plug-in. The listener configuration specifies a server address (host name and
port number) as well as the network protocol and security settings to be used
by clients that connect to that listener.

CHAPTER 1 About EJB Server

9

To enable support for HTTP, you must use the standard configuration and port
number.

HTTP tunneling support

Almost all network firewalls allow HTTP traffic to pass, but some reject IIOP
packets. When IIOP traffic is tunnelled inside of HTTP, your clients can
connect to the EJB Server through a firewall that does not allow IIOP traffic to
pass.

EJB Server’s Java client ORB performs HTTP tunnelling automatically using
the designated IIOP port. No additional configuration or proxies are required.
When connecting, the EJB Server client-side ORB first tries to open an IIOP
connection to the specified address and port. If the IIOP connection fails, the
ORB tries an HTTP-tunnelled connection to the same address and port. The
default behavior is appropriate when some users connect through firewalls that
require tunnelling and others do not; the same application can serve both types.
If you know HTTP tunnelling is always required for a Java client, you can set
the ORBHttp property to cause the ORB to use HTTP tunnelling without trying
plain IIOP connections first..

Administration and development tools
Sybase Central is a common management framework for Sybase application
and database servers. EJB Server provides the Adaptive Server plug-in to
Sybase Central plug-in for developers and administrators.

The Adaptive Server plug-in provides graphical administration facilities for
EJB Server, including support for development and deployment.

Development support You can use Sybase PowerJ 3.6 with EJB Server. Using this IDE tool, you can
develop, deploy, and debug EJB Server components entirely within the
development environment. You can also generate the proxies required for
client application development. For more information, see Building Internet
and Enterprise Applications in the Enterprise Application Studio online books
collection.

 Interface definitions can be imported from existing Java classes or from
standard CORBA IDL files.

The Adaptive Server plug-in also generates stub classes for use in Java client
applications.

Features

10

Deployment support To simplify application deployment, the Adaptive Server plug-in defines the
following basic, middle-tier application units:

• Servers A server represents one EJB Server runtime process. Each
server has its own network addresses for client session connections and for
HTTP (HTML) connections. All servers on one host machine share the
same configuration repository. For administration purposes, you can
connect to any server on the host machine to configure other servers on the
same host.

• Packages A package organizes components into cohesive, secure units
that can be easily deployed on another EJB Server. Packages can be
exported, or saved, as a Java archive (JAR) file. The package archive
includes the definition of all components in a package, plus any supporting
files (such as source code and client files) that you specify. Package
archives exported from one server can easily be imported for
redeployment on another server.

Note
Do not confuse EJB Server package names with Java package names.

• Components A component definition consists of the component’s
method signatures and other properties, such as component type,
transaction support, threading model, and the name of the Java class or
executable library that implements the component.

Before a client application can execute a component, the component must be
installed in an EJB Server package, and that package must be installed in the
server to which the client connects.

Hot refresh support EJB Server provides a Refresh menu item to refresh components, packages,
and servers. This option lets you test and debug component implementation
changes without restarting EJB Server.

Client-session and component-lifecycle management
EJB Server client sessions are established internally by the client stubs and
proxies that applications use to invoke EJB Server component methods. A
component’s lifecycle determines how instances are allocated, bound to client
sessions, and destroyed. EJB Server manages both client sessions and
component lifecycles without requiring specialized knowledge on the part of
the application developer.

CHAPTER 1 About EJB Server

11

Client-session
management

Internally, the stub or proxy object establishes a network connection between
the EJB Server and a remote client. The stub/proxy model discussed in “Client
stub/proxy support” on page 8 requires user-authentication parameters to
instantiate a stub or proxy object. The communication protocol is also
determined when the stub or proxy object is instantiated. Once the stub or
proxy object exists, all details of network communication are hidden from the
application developer.

All stubs and proxies use the Inter-ORB Invocation Protocol (IIOP) to
communicate with the EJB Server. See “Network protocol support” on page 8
discusses client protocols in detail.

For more information on stub and proxy objects, see Chapter 7, “Creating
Enterprise JavaBean Clients.”

Component-lifecycle
management

In the simplest case of lifecycle management, an instance is allocated for each
stub or proxy created by the client and is destroyed when the client explicitly
requests destruction or when it disconnects, whichever happens first.

More sophisticated components can be coded to support instance pooling.
Instance pooling allows EJB Server to maintain a cache of component
instances and bind them to client sessions on an as-needed basis. Instance
pooling requires the following changes to your component:

• The component must provide activate and deactivate methods. EJB Server
calls the activate method just before an instance is bound to a client
session. activate must be able to reset the component to an as-allocated
state. EJB Server calls deactivate just before an instance is unbound from
a client session (that is, made idle again).

• Methods in the component must use the EJB Server transaction state
primitives to request early deactivation.

For components that support EJB Server transactions, the time between EJB
Server’s activate and deactivate calls coincides with the beginning and end of
that instance’s participation in an EJB Server transaction.

Using components that support instance pooling increases the scalability of
your application. Instance pooling eliminates execution time and memory
consumption that would otherwise be spent allocating unnecessary component
instances.

Features

12

Coded character set
conversions

EJB Server supports multiple coded character sets for clients and components.
When a client and component use different coded character sets, the EJB
Server automatically converts character data from one character set to another.
For example, if the client uses the roman8 character set and the component uses
iso_1, EJB Server converts string parameters and return values automatically
from roman8 to iso_1 when the client calls the component methods.

In accordance with the Java standards, Java components use 16-bit Unicode.
Unicode contains mappings for all characters in all other known coded
character sets.

Note EJB Server and its host Adaptive Server must use the same character set.
If you change the character set on Adaptive Server, you must perform a similar
change on EJB Server. See “Configuring an EJB Server” on page 145.

Naming services
When multiple servers are involved in your application, the naming service
allows you to specify logical server names rather than server addresses. For
example, instead of connecting to your finance component server at host
badger using port 9000, you can specify the initial naming context for that
server, such as USA/MyCompany/FinanceServer. Components are identified
by specifying an initial server name context plus the package and component
name. For example:

 USA/MyCompany/FinanceServer/FinancePackage/PayrollAdmin

This layer of abstraction allows you to move a server to another host without
affecting deployed client applications. Naming does require that one EJB
Server use a well-known, stable host and port. This server acts as the name
server for other servers that participate in your application, and clients connect
to that server to resolve name requests.

You have the option of using persistent or transient storage for the naming
database. For transient storage, the EJB Server builds the name database in
memory when it starts, based on the contents of the EJB Server configuration
repository.

Configuring naming
services

Naming configuration for a multi-server application is briefly summarized as
follows:

CHAPTER 1 About EJB Server

13

1 Choose one EJB Server to act as name server for the application. You can
configure this server to store names in memory (transient storage), or to
store names in a third-party directory server (persistent storage).

2 Configure each of the remaining servers to connect to the designated EJB
Server naming server to resolve names. Each server will also update the
name space when packages and components are added or deleted in the
Adaptive Server plug-in.

Client APIs for naming EJB Server provides industry standard client-side APIs for naming services.
EJB Server also provides implementations of the CORBA standard CosNaming
API and the Java Naming and Directory (JNDI) API.

 SeeChapter 7, “Creating Enterprise JavaBean Clients,” for more information.

Connection caching
Connection caching allows EJB Server components to share pools of
preallocated connections to the database server, avoiding the overhead
imposed when each instance of a component creates a separate connection.
Components that support transactions must use a connection from an EJB
Server connection cache to interact with the database.

Transaction management
EJB Server’s transaction management feature allows you to specify a
transaction coordinator and define a component’s transactional semantics as
part of the component interface.

Thread-safety features
Since EJB Server is a multithreaded environment, component instances that
share resources and volatile data must be coded or configured to avoid
problems with inconsistent state. For example, if all instances of a component
write to the same file, you must take steps to ensure that the file is “locked”
before each instance writes to it and “unlocked” when the write completes. If
writes to the file are allowed to occur simultaneously, then output from two
component instances may be mixed together within the file.

Features

14

Whenever possible, avoid the use of static class variables. Also, avoid sharing
stateful (being able to maintain information about the state of a resource)
resources such as database connections or file descriptors. In cases where data
and resources are shared, there are two ways to ensure thread safety in a
component:

• Configure the component for single-threaded execution.

Each component defined in EJB Server has a Concurrency property. By
default, components are multithreaded and instances are allowed to
execute concurrently on different threads. You can also request single-
threading; in a single-threaded component, each method invocation blocks
other method invocations on instances of the same component.

For components in general, single-threading is the least desirable
alternative because it increases the likelihood that clients will block each
other’s execution and increase the apparent response time of client
applications. Single-threading makes sense for some specific problems;
for example, to share an output file among component instances, you can
create a single-threaded component with methods that write to the file
(another alternative is to use explicit threading primitives when
implementing code that writes to the file, such as the Java synchronized
keyword).

• Store shared data on the database.

You can use connection caching and store the data on the database, letting
the database server handle concurrency issues. (The component’s
transactional semantics may affect the interaction with the database.)

Result-set support
EJB Server methods can return tabular data to the calling client. This feature
can be useful for the following reasons:

• Use with data-aware controls Some front-end tools provide objects
that can automatically display a result set. For example, in a PowerJ
application, you can pass the result set obtained from an EJB Server
method invocation to a PowerJ Query object or DataWindow, and it will
display the rows.

• Efficiency For tasks that require returning tabular data, using an EJB
Server result set is the most efficient alternative. Common uses of result
sets include menu and pick-list population. For example, in an online
clothing catalog, you need to list in-stock sizes for each item.

CHAPTER 1 About EJB Server

15

The EJB Server result set allows data to be sent all at once (rather than
requiring a get-next-row method and one client-server round trip per
method). A large EJB Server result set can be sent with less overhead than
is required to encapsulate tabular data as an object and send a serialized
version of the object to the client.

Each component model provides an interface that allows you to define result
sets from scratch or to forward results from a database query directly to the
client.

Permissions and roles
EJB Server and its host Adaptive Server share user names and roles. If you
create a user or a role in Adaptive Server, that user and role are also valid in
EJB Server. To use the Adaptive Server plug-in with EJB Server, you must be
a registered user in Adaptive Server and have the System Administrator role.

System Administrator roleSecurity for components is handled at the method
level for each package. You include a J2EE role in the method you want to
restrict, and then map that J2EE role to a role in Adaptive Server so that only
users with that role can execute the method. The Adaptive Server plug-in
allows you to map roles through each package for methods within the package.
See “Configuring package properties” on page 94 for more information.

PowerJ overview
PowerJ is Sybase’s RAD tool for Java development. Even if you are not an
experienced Java programmer, you can use PowerJ to write sophisticated
programs. If you are an experienced Java programmer, you can use the full
facilities of Java whenever necessary.

Because PowerJ provides facilities that let you build and deploy components
directly to the middle tier, it is the ideal web development environment for EJB
Server.

With PowerJ, you can:

• Write Java code that takes advantage of the PowerJ component library, a
collection of Java classes that speeds the development process

• Use object-oriented programming features such as inheritance,
encapsulation, and polymorphism to make your objects more reusable

Features

16

• Create Java components that can be deployed directly to EJB Server

• Deploy Java nonvisual objects to the Sybase Java VM running in an
Adaptive Server database

• Retrieve and update database information using Sybase’s patented
DataWindow technology

• Access a variety of industry-standard databases through JDBC, the Java
standard for database access

• Build windows, menus, and other user interface components using visual
programming tools

17

C H A P T E R 2 Getting Started

This chapter provides basic concepts, terminology, and the task
information you need to get started using EJB Server.

Note Your installation must have a valid license for Adaptive Server-EJB
Server to use this product.

You can perform all the tasks necessary to use EJB Server from the Sybase
Central, the graphics based management tool for Sybase products. This
chapter presents a conceptual overview of the processes you will use to
develop EJB Server applications. Refer to Chapter 6, “Working with EJB
Packages and Components,” to create EJB component applications.

The installation process starts and preconfigures your Adaptive Server
host, your EJB server, and Sybase Central. This chapter provides
directions for enabling the EJB Server option, starting and stopping EJB
Server, and setting up the Adaptive Server plug-in to Sybase Central.
Refer to Chapter 10, “Configuring EJB Server,” for other configuration
tasks.

Before you use EJB Server
To use EJB Server effectively, you should be able to create programs in
the Java/Enterprise JavaBeans programming language and component
model.

You should also know how to retrieve and update information in databases
and be familiar with component technology concepts.

Topic Page
Before you use EJB Server 17

Terminology and concepts 18

Basic tasks 25

Terminology and concepts

18

Terminology and concepts
This section explains some of the basic concepts and terminology associated
with developing component-based EJB Server applications. It is intended
primarily to provide you with enough information to begin using the Adaptive
Server plug-in for Sybase Central. For detailed information on EJB application
development, refer to Chapter 6, “Working with EJB Packages and
Components.”

Terminology
An EJB application consists of one or more packages and a client application
or applet. Packages consist of components, and components are made up of one
or more methods.

• EJB Server hosts, manages, and executes JavaBean components. In the
EJB environment, a component is simply an application object that
consists of one or more methods. JavaBeans typically execute business
logic, access data sources, and return results to the client. Clients (applets)
create an instance of a component and execute methods associated with
that component. Components run strictly within the EJB Server.

• A package is a collection of components that work together to provide a
service or some aspect of your application’s business logic. A package
defines a boundary of trust within which components can easily
communicate. Each package acts as a unit of distribution, grouping
together application resources for ease of deployment and management.

• A stub is a Java class stub generated by the Adaptive Server plug-in for
Sybase Central and acts as a proxy object for an EJB component. A stub
is compiled and linked with your Java applets or client application. A stub
communicates with EJB Server to instantiate and invoke a method on a
component in the middle tier. Stubs make a remote EJB component appear
local to the client.

• A skeleton acts as the interface between the EJB runtime environment and
the user code that implements the method. Skeletons are compiled and
linked with each of the components, and at runtime they enable EJB
Server to locate and invoke an appropriate method.

CHAPTER 2 Getting Started

19

• EJB Server transparently maintains a session between a client application
and the EJB Server. Unlike a typical HTTP scenario, where a new
connection is created for each request and response, sessions allow a
browser to maintain a connection with the server across a multiple request-
response cycle.

Concepts
EJB Server implements distributed computing architecture. In this model,
three sets of elements work together to give users access to data:

• Client-side applet or application

• EJB Server components

• Adaptive Server database

Java applets are downloaded to clients, which instantiate components on the
server. Client applications are installed on client machines, from which they
also instantiate components on the server.

An applet or application manages presentation and interaction with an end user.
Components running on EJB Server handle much of the application
processing. The database stores, manages, and processes the data.

If the client is an applet, users find and launch applications from traditional
HTML pages. Instead of simply loading a static page, EJB Server downloads
an executable applet to the individual’s browser. If the client is an already-
installed application, the user launches the application from his or her machine.
Clients communicate directly with an application component running on EJB
Server. Server components access data from one or more databases, apply
business logic, and return results to the client applet for display.

When a proxy object is created on the client applet, it instantiates a
corresponding component registered with the EJB Server. On the server side, a
component is instantiated in response to a request from the proxy object
running in the client environment. A method on a component is executed when
it is invoked by a proxy object on the client applet.

Developing an application
There are three basic steps involved in creating and deploying an EJB Server
application that employs a Java applet as a client.

Terminology and concepts

20

❖ To create and deploy an EJB Server application:

1 Define packages, components, and methods. The Adaptive Server plug-in
for Sybase Central is the EJB Server GUI interface. It allows you to easily
define the packages, components, and methods that EJB Server clients use
to run an application. The Adaptive Server plug-in for Sybase Central
generates:

• The client-side stub files Stubs contain interface information used
by the client to invoke EJB component methods.

• The server-side skeleton files Skeletons provide the interface
information of each component method.

2 Create the applets and components. Once you have generated the stubs and
skeletons, write the Java classes that, once linked with the stub files, form
the basis of your downloadable applet.

In addition to the applet, you need to develop the server-side components
that link with the skeletons to form the business logic of your servlet. EJB
Server supports many of the integrated development environment (IDE)
tools, such as PowerJ, available today.

3 Deploy the application. You register components on the EJB Server. Since
EJB Server is also a Web server, you can write an HTML page for your
applet and install it on EJB Server.

The EJB Server runtime environment
A typical EJB Server application has an applet or HTML page associated with
it. Once you build and deploy such an application, it runs in the following
fashion:

1 EJB Server receives an HTTP request and downloads the requested
HTML page or applet. Included with the applet are the Java stubs, which
through a proxy, instantiate components and invoke the methods on those
components.

2 The client establishes a session with EJB Server. The session, unlike an
HTTP connection, allows the client and EJB Server to maintain a
connection throughout the transaction.

CHAPTER 2 Getting Started

21

3 The client creates a component instance through a client-side proxy. The
proxy used depends on the type of component being instantiated. EJB
Server validates the user against the component’s access list. If the user is
validated, the dispatcher checks the location and status of the component
and creates an instance.

4 The client invokes the component’s business logic by executing its
methods.

5 The component may interact with the database server. If it does, the
component obtains a connection to the database using the Sybase high-
speed JDBC driver.

6 EJB Server returns the results from the database to the client.

7 The client indicates that it has completed the operation. EJB Server
destroys the component instance or returns it to a pool for future client
instantiations. The client disconnects from EJB Server.

Basic tasks
The installation and configuration process will preconfigure and start both your
Adaptive Server Enterprise and its EJB Server. As part of the post-installation
process, you will start up Sybase Central, the graphical user interface that
allows you to manage both Adaptive Server and EJB Server.

You can use EJB Server without further configuration, but to customize EJB
Server for your installation, see Chapter 10, “Configuring EJB Server”.

The following sections describe enabling and starting EJB Server and the
Adaptive Server plug-in for Sybase Central so that you can perform these basic
tasks yourself after installation.

The installation and configuration process will start Adaptive Server, enable
the EJB Server option, start EJB Server, and start the Adaptive Server plug-in
to Sybase Central.

Basic tasks

22

Using the Adaptive Server plug-in to Sybase Central
The Adaptive Server plug-in runs within Sybase Central. Use the Adaptive
Server plug-in for Sybase Central to configure EJB Server and to define and
deploy software components and packages. An EJB Server must be running
before Sybase Central can connect to it.

You must have the System Administrator role in Adaptive Server to use the
Adaptive Server plug-in. The installation process creates this role.

EJB Server is preconfigured so that you can start up and run the server. You
may need to configure EJB Server further to run your applications.

What you can do from
the Adaptive Server
plug-in

From the Adaptive Server plug-in you can:

• Replace EJB servers

• Shutdown and restart EJB Servers

• Add or drop connection caches

• Add, drop, export, or deploy packages

• Add or drop components

• Update object properties

• Generate stubs and skeletons for components

Each of these tasks is described in subsequent chapters.

Starting the Adaptive Server plug-in

First start Sybase Central and then start the Adaptive Server plug-in from
within it.

Sybase Central You can start Sybase Central from the UNIX command line or from a Sybase
Central shortcut on the desktop.

❖ To start Sybase Central from the UNIX command line:

1 Enter:

source $SYBASE/SYBASE.csh

2 Then enter:

$SYBASE/sybcent32/java/scjview

CHAPTER 2 Getting Started

23

❖ To start Sybase Central from Windows NT:

• Select the Sybase Central Java Edition shortcut from the desktop. The
installation process creates this shortcut for you.

The Adaptive Server
plug-in

Once the Sybase Central Java version is running, you can start the Adaptive
Server plug-in.

❖ To connect to the Adaptive Server host:

1 Select Tools | Connect.

The Connect to Adaptive Server Enterprise screen displays.

2 Enter the sa user name and password.

3 Select the Adaptive Server host machine name or IP address.

4 Verify the Adaptive Server host port number.

5 Click Connect.

Disconnecting from the Adaptive Server host

dSybase Central allows you to disconnect the Adaptive Server plug-in from an
Adaptive Server host so that you can connect to another server, or reconnect to
the same server, without restarting the plug-in.

❖ To disconnect from the Adaptive Server host:

1 Highlight the Adaptive Server host.

2 Select File | Disconnect.

Enabling EJB Server
The installation process enables the EJB Server option in Adaptive Server.
Later on, you can enable or disable an EJB Server in either of two ways:

• From the Adaptive Server plug-in to Sybase Central

• From the command line using isql

Enabling EJB Server is a dynamic process. You do not need to restart Adaptive
Server for it to take effect. After you enable EJB Server, select File | Refresh
All to display the Enterprise JavaBeans folder beneath the host Adaptive
Server.

Basic tasks

24

❖ To enable EJB Server from the Adaptive Server plug-in:

1 Highlight the Adaptive Server host for the EJB Server.

2 Select File | Configure.

3 Select “enable enterprise java beans” from the alphabetical list of
configuration parameters.

4 Change the number in the Value column to 1.

5 Click OK.

❖ To enable EJB Server using isql:

1 Log in to Adaptive Server using isql.

2 Enter:

sp_configure ’enable enterprise java beans’, 1

Disabling EJB Server
You can disable the EJB Server option in either of two ways:

• From the Adaptive Server plug-in to Sybase Central

• From the command line using isql

Disabling EJB Server is a dynamic process. You do not need to restart Adaptive
Server for it to take effect. After you disable EJB Server, select File | Refresh
All to remove the Enterprise JavaBeans folder beneath the host Adaptive
Server.

❖ To disable EJB Server from the Adaptive Server plug-in:

1 Highlight the Adaptive Server host for the EJB Server.

2 Select File | Configure.

3 Select “enable enterprise java beans” from the alphabetical list of
configuration parameters.

4 Change the number in the Value column to 0.

5 Click OK.

CHAPTER 2 Getting Started

25

❖ To disable EJB Server using isql:

1 Log in to Adaptive Server using isql.

2 Enter:

sp_configure ’enable enterprise java beans’, 0

Starting EJB Server automatically
When the installation process is complete:

• EJB Server is running.

• EJB Server is configured to start up automatically each time Adaptive
Server starts up.

Later on, you can enable or disable automatic startup using the sp_serveroption
system procedure.

For example, to disable automatic startup, enter:

sp_serveroption ’SYB_EJB’,
’external engine auto start’, ’false’

where SYB_EJB is the logical name of the EJB Server.

To enable automatic startup, enter:

sp_serveroption ’SYB_EJB’,
’external engine auto start’, ’true’

Starting EJB Server independently

Note Adaptive Server must be running before you can start EJB Server.

You can start or restart EJB Server in two ways:

• From the Adaptive Server plug-in to Sybase Central.

• Using the sp_extengine system procedure.

❖ To restart EJB Server from the Adaptive Server plug-in

1 Right-click on the EJB Server you want to restart.

2 Choose File | Restart.

Basic tasks

26

3 Press View | Refresh Folder.

Note Restarting EJB Server may take a minute or two, depending on the
load on Adaptive Server.

You can stop and then restart EJB Server from the Adaptive Server plug-in. To
start an EJB Server that has been shut down in another way, you must use the
sp_extengine system procedure.

❖ To start EJB Server using the sp_extengine system procedure

1 Log in to Adaptive Server using isql.

2 Enter this command:

sp_extengine ’SYB_EJB’, ’start’

where SYB_EJB is the logical name of the EJB Server.

Shutting down EJB Servers
You can stop EJB Server in three ways:

• From the Adaptive Server plug-in

• Using the sp_extengine system procedure

• By shutting down Adaptive Server Enterprise

❖ To shut down EJB Server from the Adaptive Server plug-in

1 Highlight the EJB Server you want to shut down.

2 Press File | Stop EJB

❖ To shut down EJB Server using sp_extengine

1 Log in to Adaptive Server using isql.

2 Enter this command:

sp_extengine ’SYB_EJB’, ’stop’

where SYB_EJB is the logical name of the server.

❖ To shut down both EJB Server and Adaptive Server

1 Log in to Adaptive Server using isql.

2 Enter this command:

CHAPTER 2 Getting Started

27

shutdown

 You can also use shutdown with the no wait option.

Note Issuing a “kill -9” command on Adaptive Server will not shut down the
associated EJB Server.

Verifying the status of EJB Server
To determine if EJB Server is running, use the sp_extengine system procedure.

Log in to Adaptive Server using isql and enter:

sp_extengine ’SYB_EJB’, ’status’

where SYB_EJB is the logical name of the EJB Server.

Basic tasks

28

P A R T 2 Information for
Developers

This part provides an overview of Enterprise JavaBeans
(EJBs) and information about using the Adaptive Server
plug-in for Sybase Central and PowerJ to create EJB
clients and components.

31

C H A P T E R 3 Enterprise JavaBeans Overview

EJB Server supports Enterprise JavaBean (EJB) 1.1 components.

For details on EJB architecture, see the EJB 1.1 specifications from Sun
Microsystems at http://java.sun.com/products/ejb/.

Topic Page
About Enterprise JavaBean components 32

EJB support 38

About Enterprise JavaBean components

32

About Enterprise JavaBean components
The EJB technology defines a model for the development and deployment
of reusable Java server components, called EJB components.

An EJB component is a nonvisual server component with methods that
typically provide business logic in distributed applications. A remote
client, called an EJB client, can invoke these methods, which typically
results in the updating of a database.

The EJB architecture looks like this:

EJB server EJB Server holds the EJB container, which provides the
services required by the EJB component.

EJB client An EJB client usually provides the user-interface logic on a
client machine. The EJB client makes calls to remote EJB components on
a server and needs to know how to find the EJB server and how to interact
with the EJB components. An EJB component can act as a EJB client by
calling methods in another EJB component.

An EJB client does not communicate directly with an EJB component. The
container provides proxy objects that implement the components home
and remote interfaces. The component’s remote interface defines the
business methods that can be called by the client. The client calls the home
interface methods to create and destroy proxies for the remote interface.

CHAPTER 3 Enterprise JavaBeans Overview

33

EJB container The EJB specification defines a container as the
environment in which one or more EJB components execute. The
container provides the infrastructure required to run distributed
components, allowing client and component developers to focus on
programming business logic, and not system-level code. In EJB Server,
the container encapsulates:

• The client runtime and generated stub classes, which allow clients to
execute components on a remote server as if they were local objects.

• The naming service, which allows clients to instantiate components
by name, and components to obtain resources such as database
connections by name.

• The EJB Server component dispatcher, which executes the
component’s implementation class and provides services such as
transaction management, database connection pooling, and instance
lifecycle management.

EJB component implementation The Java class that runs in the server
implements the Bean’s business logic. The class must implement the
remote interface methods and additional methods for lifecycle
management.

EJB component types
You can implement three types of EJB component, each for a different
purpose:

• Stateful session Beans

• Stateless session Beans

• Entity Beans

Stateful session Beans

A stateful session Bean manages complex processes or tasks that require
the accumulation of data, such as adding items to a Web catalog’s
shopping cart. Stateful session Beans have the following characteristics:

• They manage tasks that require more than one method call to
complete, but are relatively short-lived. For example, a session Bean
might manage the process of making an airline reservation.

About Enterprise JavaBean components

34

• They typically store session state information in class instance data,
and do not survive server crashes.

• There is an affinity between each instance and one client from the
time the client creates the instance until it is destroyed by the client or
by the server in response to an expired instance timeout limit.

For example, if you create a session Bean on a Web server that tracks a
user’s path through the site, the session Bean is destroyed when the user
leaves the site or idles beyond a specified time

Stateless session Beans

A stateless session Bean manages tasks that do not require the keeping of
client session data between method calls. Stateless session Beans have the
following characteristics:

• Method invocations do not depend on data stored by previous method
invocations.

• There is no affinity between a component instance and a particular
client. Each call to a client’s proxy may invoke a different instance.

• From the client’s perspective, different instances of the same
component are identical.

Unlike stateful session Beans, stateless session Beans can be pooled by the
server, improving overall application performance.

Entity Beans

An entity Bean models a business concept that is a real-world object. For
example, an entity Bean might represent a scheduled airplane flight, a seat
on the airplane, or a passenger’s frequent-flyer account. Entity Beans have
the following characteristics:

• Each instance represents a row in a persistent database relation, such
as a table, view, or the results of a complex query.

• The Bean has a primary key that corresponds to the database relation’s
key, and is represented by a Java datatype or class.

CHAPTER 3 Enterprise JavaBeans Overview

35

EJB transaction attribute values
Each EJB component has a transaction attribute that determines how
instances of the component participate in transactions. In EJB Server, you
set the transaction attribute in the Transaction tab of the Component
Properties dialog box.

When you design an EJB component, you must decide how the Bean will
manage transaction demarcation: either programmatically in the business
methods, or whether the transaction demarcation will be managed by the
container based on the value of the transaction attribute in the deployment
descriptor.

A session Bean can use either Bean-managed transaction demarcation or
container-managed transaction demarcation; you cannot create a session
Bean where some methods use container-managed demarcation and others
use Bean-managed demarcation. An entity Bean must use container-
managed transaction demarcation.

Table 3-1 lists the transaction attribute values. Requires, Supports,
Requires New, or Mandatory are the values that specify container-
managed transaction demarcation. You can set the Transaction Attribute
for the component and for individual methods in the home and remote
interfaces. Values set at the method level override the component setting.

About Enterprise JavaBean components

36

Table 3-1: Transaction attribute values

Attribute Description

Not Supported (The component-level default.) The EJB component’s methods
never execute as part of a transaction. If the EJB component is
activated by a client that has a pending transaction, the EJB
component’s work is performed outside the existing
transaction.

Since entity Beans are almost always involved in transactions,
this value is not usually used for an entity Bean.

Supports The EJB component can execute in the context of an EJB
Server transaction, but a transaction is not required to execute
the component’s methods. If a method is called by a base client
that has a pending transaction, the method’s database work
occurs in the scope of the client’s transaction. Otherwise, the
EJB component’s database work is done outside of any
transaction.

Required The EJB component always executes in a transaction. Use this
option when your EJB component’s database activity needs to
be coordinated with other components, so that all components
participate in the same transaction.

Requires New Whenever the EJB component is instantiated, a new
transaction begins.

Mandatory EJB component methods must be called in the context of a
pending transaction. If a client calls a method without an open
transaction, the EJB Server ORB throws an exception.

Never The component’s methods never execute as part of a
transaction, and the component may cannot be called in the
context of a transaction. If a client or another component calls
the component with an outstanding transaction, EJB Server
throws an exception.

Bean
Managed

(For EJB session Beans only.) The EJB component can
explicitly begin, commit, and roll back new, independent
transactions by using the javax.transaction.UserTransaction
interface. Transactions begun by the component execute
independently of the client’s transaction. If the component has
not begun a transaction, the component’s database work is
performed independently of any EJB Server transaction.

Default to
component

(Method-level default) In the Transactions tab of the Method
properties window, choose this option if the method should
inherit the transaction attribute set in the component
properties.

CHAPTER 3 Enterprise JavaBeans Overview

37

EJB container services
The EJB container provides services to EJB components. The services
include transaction and persistence support.

Transaction support An EJB container must support transactions. EJB
specifications provide an approach to transaction management called
declarative transaction management. In declarative transaction
management, you specify the type of transaction support required by your
EJB component. When the Bean is deployed, the container provides the
necessary transaction support.

Persistence support An EJB container can provide support for
persistence of EJB components. An EJB component is persistent if it is
capable of saving and retrieving its state. A persistent EJB component
saves its state to some type of persistent storage (usually a file or a
database). With persistence, an EJB component does not have to be re-
created with each use.

An EJB component can manage its own persistence (by means of the logic
you provide in the Bean) or delegate persistence services to the EJB
container. Container-managed persistence means that the data appears as
member data and the container performs all data retrieval and storage
operations for the EJB component. See Chapter 8, “Managing Persistent
Component State,” for more information.

EJB support

38

EJB support
EJB Server can host EJB components developed according to version 1.1
of the Enterprise JavaBeans specification. EJB Server supports session
Beans and entity Beans with Bean-managed persistence or container-
managed persistence.

See the complete EJB 1.1 specifications from Sun Microsystems at
http://java.sun.com/products/ejb/.

Running EJB components in EJB Server
You can run Enterprise JavaBeans as EJB Server components using any of
these techniques:

• Define EJB components in PowerJ, using wizards to define the
interfaces and deploy the Bean directly from PowerJ to EJB Server.
See the PowerJ documentation for more information.

• Use the Adaptive Server plug-in to Sybase Central to import an EJB-
JAR file that contains the classes and deployment descriptors for one
or more EJB components. The Adaptive Server plug-in defines
components with properties matching the deployment descriptor
settings.

• Import compiled versions of a home interface, remote interface,
implementation class, and (for entity Beans) the primary key class.
The Adaptive Server plug-in defines IDL interfaces for the interfaces
and the primary key, and defines an EJB component with default
settings. You can configure additional settings such as transaction
attributes and database resource references using the Adaptive Server
plug-in Component Properties dialog box.

• Define an EJB component from scratch in the Adaptive Server plug-
in, using the IDL generation tools to define the home interface, remote
interface, and primary key type. The Adaptive Server plug-in
generates Java classes for the home and remote interfaces and primary
key class, as well as a template for the implementation class.

CHAPTER 3 Enterprise JavaBeans Overview

39

EJB clients connecting to EJB Server
EJB Server also supports the Enterprise JavaBean client model by
generating EJB proxies and providing an EJB-compliant implementation
of the JNDI NamingContext class. You can generate EJB-style proxies for
any IDL interface, and use the proxies to call methods on components that
implement that interface. The NamingContext class can also be used in EJB
components to instantiate home interfaces for intercomponent calls.

EJB support

40

41

C H A P T E R 4 Creating Component-Based
Applications

About this chapter This chapter describes the process of designing, building, and deploying
applications with components executing in EJB Server.

Contents
Topic Page

Application architecture 42

Designing the application 44

Implementing components and clients 46

Deploying the application 48

Application architecture

42

Application architecture
EJB Server applications are composed of clients and an EJB Server that hosts
components. The clients can run on different machines; the components
execute on the host server machine as part of the EJB Server process.
Components, in turn, connect to databases on the host server machine.

Building EJB Server applications is different from building standard
client/server applications in that the parts of the application communicate with
each other in a variation of traditional three-tiered architecture.

EJB Server
architecture

In traditional three-tiered architecture, the client resides on the first tier, the
application server and components reside on the second tier, and remote
databases reside on the third tier. In the EJB Server three-tiered architecture,
see Figure 4-1, the databases reside on the same host as the EJB Server. They
communicate using a Sybase high-speed JDBC driver through shared memory.

Executing methods on a component from the client or another component,
retrieving data from databases, and other communications are managed by the
EJB Server. EJB Server handles the details of transactions, threads, security,
database connections, and network communication so that you can concentrate
on writing the business logic and user interface for the components and clients.

CHAPTER 4 Creating Component-Based Applications

43

Figure 4-1: EJB Server architecture

As in client/server applications, the client contains the user interface. Unlike
client/server applications, however, business logic (such as stored procedures)
is separate from both the clients and the database. Instead, business logic
resides in the second tier as components that analyze data, perform
computations, or retrieve information from data sources and process it. You
design an EJB Server application by coding these tasks into an interface and
into method prototypes.

A primary benefit of this model is that you can include pre-built components
in the EJB Server application. If these components have been built outside EJB
Server, you can import them using the Adaptive Server plug-in. Importing
components adds their interfaces and method prototypes to EJB Server. The
client and components are built from the same interface and method
prototypes. You can build the client and components concurrently, as long as
the client and component development teams notify each other if either of them
changes the interface or method prototypes.

DB
DB

Component

Client

Component

EJB Server

Host

Designing the application

44

Designing the application
In the design stage, you plan the infrastructure for developing and deploying
the application, define the EJB Server components, the component interfaces,
and the EJB Server packages that contain the components. At the end of this
phase, you will have packages and components defined in the Adaptive Server
plug-in.

Follow these steps to design the application:

1 “Plan for server infrastructure needs” on page 44

2 “Define EJB Server packages” on page 44

3 “Define components” on page 45

4 “Define connection caches” on page 46

Plan for server
infrastructure needs

For an enterprise application implemented by several developers, you may
need to create several EJB Servers to increase developer productivity. For
example, you might want dedicated servers for each of the following:

• Component development Servers to test components that are under
development or revision. A typical configuration uses one server per
developer, running on the developer’s personal workstation.

• Client testing/Quality Assurance (QA) Client developers require a
server with a stable installation of the application components, to be used
by client developers to test their programs. During the early development
phase, you can deploy stubbed components to this server to allow testing
of client connectivity and basic method execution. (A stubbed component
has empty method implementations. For most component models, the EJB
Server generates source for a stubbed implementation when you generate
the component skeleton.)

• Production You will need to install EJB Server on the host machine for
the live version of the application. For Internet applications, this machine
must be available to clients that are outside your corporate firewall.

Define EJB Server
packages

Components must be installed in a package before they are available for use in
applications. You should install components that perform related tasks together
in a single package. Chapter 6, “Working with EJB Packages and
Components,” describes how to create packages in the Adaptive Server plug-
in.

CHAPTER 4 Creating Component-Based Applications

45

Packages are the units of deployment for your application; you can use the
Adaptive Server plug-in to import and export archives of a package, its
installed components, and related application files. For example, you can
deploy a tested configuration by exporting packages from your test server and
importing them into the production server. For more information, see
“Deploying components” on page 48.

Packages are also one level in the EJB Server authorization hierarchy. You can
edit the package’s required Role Memberships to restrict which users can
access components in the package.

Define components For each component, you must choose the component model, design the
component interface, determine transactional semantics, and define the
component in EJB Server.

Choose the component model Choose the component model based on
your development team’s expertise. “Server-Side Component Support” on
page 7 describes the available component models.

Design the transactional semantics You must decide what transactional
semantics the component will follow and how the component lifecycle will be
managed. Chapter 5, “Understanding Transactions and Component
Lifecycles” explains the design concepts for transaction and lifecycle control
in EJB Server components.

The following design decisions determine how EJB Server manages your
component’s transactions:

• Which transaction attribute the component uses

• Whether transaction boundaries are managed explicitly in the component
implementation or implicitly by EJB Server

If your component interacts with the database, you must specify a transactional
attribute that determines how the component’s database work is grouped within
EJB Server transactions. If another component invokes your component, the
transaction attribute determines whether your component’s database work is
done independently or as part of the existing EJB Server transaction.

You must also decide whether or not you will code your component to manage
transaction boundaries explicitly. To manage transaction boundaries explicitly,
each method must call one of EJB Server’s transaction state primitives to
indicate the status of the component’s transactional work. “Using transaction
state primitives” on page 61 describes this topic in detail.

Implementing components and clients

46

Instead of writing code to manage transaction boundaries explicitly, you can
set the component’s Automatic demarcation/deactivation property in the
Adaptive Server plug-in. This setting is appropriate if every method in your
component executes a complete unit of transactional work (in other words, the
transactional outcome is never pending when a method returns). When this
option is enabled, EJB Server deactivates the component instance after every
method invocation. Upon deactivation, the transaction is always committed
unless the component aborts the transaction by calling the rollbackWork
transaction primitive. In the Adaptive Server plug-in, the Automatic
demarcation/deactivation property is set in the Component Properties window,
beneath the Transactions tab. “Configuring component properties” on page 75
describes how to view and modify component properties in the Adaptive
Server plug-in.

For any component, transactional or not, you must decide how your
component’s instance lifecycle will be managed. “Component lifecycles” on
page 51 describes the general instance lifecycle model and your options for
instance lifecycle management.

Define the component in the Adaptive Server plug-in Use the Adaptive
Server plug-in to define the components. If you have already created Java
components, you can import the component interfaces into the Adaptive Server
plug-in—you do not need to define method prototypes again in the Adaptive
Server plug-in.

Define connection
caches

Connection caching increases the scalability of your application, since it
eliminates repetitive login/logoff operations for connections to databases.
Connection caching is also required for EJB Server transactions to function as
intended.

You must define a connection cache for the database that your components
interact with, and then implement your components to use cached connections.
See “Managing connection caches” on page 153, which describes how to
define connection caches in the Adaptive Server plug-in

Implementing components and clients
With the design in place, your component developers and client developers can
begin implementing the clients and components that form the application.

CHAPTER 4 Creating Component-Based Applications

47

Implementing
components

To create an EJB component, use PowerJ or another JDK-1.2 compatible
development tool to create the component. From PowerJ you can import the
component definitions into EJB Server, and deploy the component on the EJB
Server. If using another development tool, you must perform these tasks with
the Adaptive Server plug-in.

To learn how to build EJB components, see Chapter 6, “Working with EJB
Packages and Components.”

Design and implement
the client

Client developers can work concurrently with component developers. To allow
prototyping and testing of client programs, you may want to create a client test
server that hosts stubbed versions of the application components (that is,
components with minimal method implementations). All clients for EJB
Server components must be Java clients.

The Java client Java applets do not require customer installation and
simplify the task of providing upgrades. The customer always downloads the
most recent applet. If you do not want the customer to wait for the Java classes
to download from the EJB Server, you can install the Java classes on the client
machine or use Marimba Castanet to speed up the download time.

If the client application is large and requires many Java classes, download time
might be unacceptable. In this case, use a Java application that is installed
locally on the client machine. This approach is ideal for intranet customers or
even regular Internet customers. Although not as simple as providing upgrades
with an applet, Java applications are no more difficult to upgrade than
conventional software. In fact, Marimba Castanet can be used to automatically
upgrade the Java application across the Internet.

Java IDEs such as PowerJ offer visual interface builders that greatly simplify
the implementation of the user interface.

In some situations, you might want to implement different versions of a client
for different users. For example, you may implement a Java applet version to
allow new customers to connect over the Internet without installing a client
program. For established customers who use the application heavily, you can
implement a standalone client program that offers improved performance.

Client design issues In designing your client, plan to optimize network
performance by keeping traffic between the client and components on the
server to a minimum. To optimize network performance, plan to:

• Cache property changes in client data structures.

• Validate field values on the client.

Deploying the application

48

• Update only the rows and columns that have changed. For example, do not
implement a client to update an entire table when only a few rows have
changed.

• Group data changes into larger sets with fewer method calls.

Deploying the application
After you have tested and debugged the application on your test server, it is
time to deploy the component files to a production server and make the client
application files available to the application users. Follow these steps to deploy
the application:

1 “Deploying components” on page 48.

2 “Developing clients” on page 49.

Deploying components
To deploy components, you copy component definitions and implementation
files to EJB Server. There are two ways to do this:

• Using PowerJ

• Importing an EJB JAR

Using PowerJ If developing Java clients and components, you can deploy your application to
the EJB Server directly from the PowerJ IDE. To deploy components,
configure deployment options using the Run | Deploy options menu item, then
deploy using the Run | Deploy menu item. See the PowerJ documentation or
online help for more information.

Importing an EJB JAR You can use a Java development tool such as Sybase PowerJ to define and
develop Beans in the EJB 1.1 format and create an EJB-JAR file. The Adaptive
Server plug-in can read the JAR file and create a package containing a
component for each Bean in the JAR file. See Chapter 6, “Working with EJB
Packages and Components,” for more information about importing EJB JAR
files.

CHAPTER 4 Creating Component-Based Applications

49

Developing clients
You can use PowerJ to develop Java clients for EJB Server components. Basic
tasks for developing clients include:

• Generate EJB stubs.

• Add code to create the initial naming context and instantiate the home
interface proxies.

• Add code to instantiate remote interface proxies.

• Add code to call remote interface methods.

See Chapter 7, “Creating Enterprise JavaBean Clients,” for detailed
information about developing clients.

Deploying the application

50

51

C H A P T E R 5 Understanding Transactions and
Component Lifecycles

This chapter explains the EJB Server component lifecycle and transaction
processing models. Transactions allow you to group database updates
performed by multiple components into a single atomic unit of work,
which greatly simplifies error recovery in component-based applications.

The component lifecycle determines how instances of a component are
allocated, bound to a client, and destroyed. The EJB Server component
lifecycle is designed to maximize reuse of resources and minimize the
possibility that a client application can monopolize a server resource.

The component lifecycle and the transaction model are tightly integrated.
You must understand both to use transactions effectively in your
application.

Component lifecycles
The EJB Server component lifecycle is designed to:

• Maximize sharing and reuse of server resources

• Minimize the possibility that a client application can monopolize
server resources

To achieve these goals, EJB Server supports the concepts of component
instance pooling and early deactivation.

Topic Page
Component lifecycles 51

The EJB Server transaction processing model 55

OTS/XA transaction model 66

Component lifecycles

52

Instance pooling allows a single component instance to service multiple
clients. The component lifecycle contains activation and deactivation steps:
Activation binds an instance to an individual client; deactivation indicates that
the instance is unbound. Instance pooling eliminates resource drain from
repeated allocation of component instances.

Early deactivation allows a component’s methods to specify when
deactivation occurs. Early deactivation prevents a client application from tying
up the resources that are associated with a component instance and allows the
instance to serve more clients in a given time frame.

A component that is deactivated after each method call and supports instance
pooling is said to be a stateless component because the component’s state is
reset across the boundary of a transaction and activation. Early deactivation
and instance pooling promotes greater scalability by enabling an increasing
number of clients to use a static number of instances. An application design
based on stateless components offers the greatest scalability.

States in the
component lifecycle

Generic component lifecycle EJB Server components in any component
model follow the state diagram illustrated in this figure:

Figure 5-1: States in the EJB Server component lifecycle

The state transitions are as follows:

CHAPTER 5 Understanding Transactions and Component Lifecycles

53

• New instance The EJB Server runtime allocates a new instance of the
component. The instance remains idle in the instance pool waiting for the
first method invocation.

• Activation Activation prepares a component instance for use by a client.
Once an instance is activated, it is bound to one client and can service no
other client until it has been deactivated. If a component is transactional,
activation also indicates the beginning of the instance’s participation in a
transaction.

• In method In response to a method invocation request from the client,
the EJB Server runtime calls the corresponding method in the component.
The next state depends on which of the transaction state primitives the
method calls before returning. (The state transition also depends on
whether the method returns with an uncaught exception.) See “Using
transaction state primitives” on page 61 for more information.

• Deactivation Deactivation indicates that the component is no longer
bound to the client. Methods can call either the completeWork or
rollbackWork transaction state primitives to cause explicit deactivation of
the instance. As discussed in “Using transaction state primitives” on page
61, these primitives also affect the transaction’s outcome. Deactivation
can also occur automatically, under any of the following circumstances:

• If the instance is participating in a transaction, the instance is
deactivated when the transaction commits, rolls back, or times out.

• If you have configured the component’s Instance Timeout property to
a finite setting, an instance is deactivated if the time between
consecutive method calls exceeds the timeout value. “Resources tab
component properties” on page 80 describes how to configure this
property.

• Destruction Destruction occurs if the component instance cannot be
recycled. “Supporting instance pooling in your component” on page 54
describes how to ensure instance reuse. If the component cannot be reused,
deactivation is followed by destruction of the instance.

Component lifecycles

54

The EJB Server component lifecycle allows component instances to be
recycled; idle component instances can be cached when idle and bound to the
service of individual clients only as needed. If your component has been coded
to support early deactivation, a client holding a reference to the component’s
stub or proxy object may be serviced by several different instances of the
component. After each deactivation, the next method invocation causes an
instance to be activated and bound to the client. Overall server scalability is
increased because a new instance does not have to be instantiated each time a
client invokes a method.

Supporting instance
pooling in your
component

Instance pooling eliminates resource drain caused by repeated allocation of
new component instances.

For Java components, you can implement a lifecycle-control interface to
control whether the component instances are pooled. These interfaces also
provide activate and deactivate methods that are called to indicate state
transitions in a component instance’s lifetime. For more information on these
interfaces, see the following sections:

• Java components can implement the interface
jaguar.beans.enterprise.ServerBean.

To support instance pooling, code that responds to activation events must
restore the component to its initial state (that is, as if it were newly created).
The Java interface has methods that allow an instance to selectively refuse
pooling: canReuse in Java.

When the component Pooling option is set in EJB Server, the Java canReuse
method is not called, even if the component implements the ServerBean Java
interface.

Stateful versus
stateless components

A component that can remain active between consecutive method invocations
is called a stateful component. A component that is deactivated after each
method call and that supports instance pooling is said to be a stateless
component. Typically, an application built with stateless components offers
the greatest scalability.

Stateful components A stateful component remains active across method
calls.

Since deactivation happens at the mercy of client applications, you may wish
to configure the Instance Timeout property for stateful components so that a
client cannot monopolize a component instance indefinitely. See “Resources
tab component properties” on page 80 for more information.

Stateless components In order for a component to be stateless, both of the
following must be true:

CHAPTER 5 Understanding Transactions and Component Lifecycles

55

• You have configured or implemented the component to be deactivated
after every method invocation. In the Adaptive Server plug-in, you can
enable the Automatic deactivation / demarcation property for the
component (located on the Transactions tab in the Component Properties
window). Alternatively, you can implement the component so that it calls
either completeWork or rollbackWork in every method.

• You have enabled the Pooling option in the Component Properties window
(this option is located on the Instances tab).

Stateless components cannot use instance-specific data to accumulate data
between method invocations.

Some situations require that you accumulate data across method invocations.
For example, a PurchaseOrder component might have an addItem() method that
is called repeatedly to specify the contents of an order. In lieu of instance-
specific data, you can use one of these alternatives to accumulate data:

• Accumulate data in the database Use connection caching and
database commands to accumulate data in the database. This is the
preferred technique.

• Accumulate data in the client Create a data structure that is passed to
each method invocation and contains all accumulated data. This technique
is only practical if the amount of data is small. Sending large amounts of
data over the network will degrade performance.

• Accumulate data in a file If the accumulated data is small and
represented by simple data structures, you can store the data in a local file.

The EJB Server transaction processing model
An EJB Server transaction is a transaction whose boundaries and outcome are
determined by EJB Server. Components can be marked as transactional in the
Adaptive Server plug-in. If a component is transactional, the EJB Server
transaction manager ensures that the component’s third-tier database queries
execute as part of a transaction. Multiple components can participate in an EJB
Server transaction; the EJB Server transaction manager ensures that all
database changes performed by the participating transactions are all committed
or rolled back.

Transactions All transactions are defined by the ACID test:

The EJB Server transaction processing model

56

• Atomic If a transaction is interrupted, all changes that the transaction
has made are cancelled or rolled back.

• Consistent A transaction produces results that preserve invariant
properties.

• Isolated A transaction’s intermediate states cannot be monitored or
changed by other transactions; transactions execute their results one after
another.

• Durable The changes that a transaction completes are permanent.

How EJB Server transactions work
In the Adaptive Server plug-in, you can declare EJB Server components to be
transactional. When a component is transactional and uses the EJB Server
connection management feature, commands sent on a third-tier-database
connection are automatically performed as part of a transaction. Component
methods can call the EJB Server transaction state primitives to influence
whether EJB Server commits or aborts the current transaction.

The component lifecycle is tightly integrated with the EJB Server transaction
model. Component instances that participate in a transaction are not
deactivated until the transaction ends or until the component indicates that its
contribution to the transaction is over (that is, its work is done and ready for
commit or that its work must be rolled back). An instance’s time in the active
state corresponds to the beginning and end of its participation in a transaction.

Benefits of using EJB Server transactions
The benefits of using transactions to group database updates are clear. You can
easily code methods in a single component to implement transactions that run
against a single data source. However, those methods may in turn be executed
by another component, which itself is defining a transaction. In this situation,
error recovery becomes difficult. For example, consider the following scenario
in which an Enrollment component calls both Registrar and Billing components:

A transaction involving
multiple components

In the following figure, the Enrollment.enroll() method calls methods in the
Registrar and StudentBilling components:

• Registar.reserveSeat() checks that a seat is available. If so, it decrements
the count of available seats and adds the student to the course’s enrollment
list. If no seats are available, reserveSeat() fails.

CHAPTER 5 Understanding Transactions and Component Lifecycles

57

• StudentBilling.addToBill() checks that the student has a billable credit
record. If so, addToBill() adds the course cost to the student’s bill for that
semester. If the student has a credit problem (if, for example, she owes
money for an overdue book), addToBill() fails.

Figure 5-2: An example EJB Server transaction

To be correct, both the database update made by the Registrar and the update
made by the StudentBilling components must occur, or neither must occur. In
other words, if the student cannot be billed, the course’s available seats must
not be changed. To handle this case, you could add logic to the enroll() method
to undo changes (requiring an unreserveSeat() method in Registrar). However,
as more components are added to the scenario, the logic needed to undo
previous changes quickly becomes unmanageable. It is much easier to define
all the participating components to use EJB Server transactions. Then an error
in any component can induce a rollback of all changes made by the other
participating components before the error occurred.

By defining the participating components to use EJB Server transactions, you
can be sure that the work performed by the components that participate in a
transaction occurs as intended.

Defining transactional semantics

❖ To define how a component participates in transactions, you must:

1 Choose a transaction coordinator. The transaction coordinator manages
the flow of transactions that involve more than one connection.
“Transaction coordinators” on page 58 describes the available options.

The EJB Server transaction processing model

58

2 Specify the component’s transaction attribute. Each component has a
transaction attribute that determines whether instances of the component
participate in transactions. “Transactional component attribute” on page
58 describes the attribute settings and their meanings.

3 Code methods to call the EJB Server transaction state primitives. Each
method should call the appropriate transaction state primitive to reflect the
state of the work that the component has contributed to the transaction.
“Using transaction state primitives” on page 61 describes the state
primitives in detail.

4 Specify a transaction timeout period if needed. By default, transactions are
never timed out. You can configure a finite timeout period in the Adaptive
Server plug-in. See “Transaction Timeout property” on page 62 for more
information.

Transaction
coordinators

All components installed in one EJB Server share the same transaction
coordinator.

Choices for transaction coordinator include:

• Shared connection This “pseudo-coordinator” is built into EJB Server.
In this model, all components participating in a transaction share a single
connection. To use this model, all of your application data must reside on
one data server, and all components that participate in a transaction must
use a connection with the same user name and password.

• OTS/XA transactions For NT or UNIX users, this option complies with
the Object Transaction Service (OTS) and X/Open Architecture (XA)
standards. This option uses the Transarc Encina® transaction coordinator
that is built into EJB Server. The Encina transaction coordinator uses two-
phase commit to coordinate transactions among multiple databases.

The default coordinator is the “Shared Connection” coordinator. To view or
change the coordinator, use the Server Properties dialog box in the Adaptive
Server plug-in.

Transactional
component attribute

Components in EJB Server have a transaction attribute that indicates how a
component participates in transactions. You can view and change a
component’s transaction attribute using the Adaptive Server plug-in; the
attribute is displayed on the Transactions tab in the Component Properties
window. The attribute has the following values:

• Not Supported The Default. The component’s methods never execute
as part of a transaction. If the component is activated by another
component that is executing within a transaction, the new instance’s work
is performed outside of the existing transaction.

CHAPTER 5 Understanding Transactions and Component Lifecycles

59

• Supports Transaction The component can execute in the context of a
EJB Server transaction, but a connection is not required in order to execute
the component’s methods. If the component is instantiated directly by a
base client, EJB Server does not begin a transaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

• Requires Transaction The component always executes in a transaction.
When the component is instantiated directly by a base client, a new
transaction begins. If component A is activated by component B, and B is
executing within a transaction, then A executes within the same
transaction; if B is not executing in a transaction, then A executes in a new
transaction.

• Requires New Transaction Whenever the component is instantiated, a
new transaction begins. If component A is activated by component B, and
B is executing within a transaction, then A begins a new transaction that is
unaffected by the outcome of B’s transaction; if B is not executing in a
transaction, then A executes in a new transaction.

• Mandatory Methods may only be invoked by a client that has an
outstanding transaction.

• Bean Managed Uses EJB 1.1 transactional behavior. The component
cannot inherit a client or other component’s transaction. The component
can execute without a transaction or explicitly begin, commit, and roll
back transactions by using the javax.transaction.UserTransaction interface
for EJB components.

The following table lists design scenarios and the transaction attributes that
apply to each.

The EJB Server transaction processing model

60

Table 5-1: Deciding on a transaction attribute

For example, in the scenario illustrated in “A transaction involving multiple
components” on page 56, the Enrollment component must be marked Requires
Transaction or Requires New Transaction, since it calls methods in the
Registrar and StudentBilling components, and the work performed by the called
components must be grouped in a single transaction. Both Registrar and
StudentBilling must be marked Supports Transaction or Requires Transaction
so that their database updates can be grouped in the transaction begun by the
Enrollment component.

Transaction Not Supported is useful when your component performs updates
to a noncritical database. For example, consider a component whose sole
function is to log usage statistics to the database. Since usage statistics are not
mission-critical data, you can choose Not Supported as the component’s
transaction attribute to ensure that the logging updates do not incur the
overhead of using two-phase commit.

Design scenario
Applicable transaction
attributes

Your component interacts with the database, and its
methods may be called by another component as part
of a larger transaction. Multiple updates are issued
before calling completeWork, or an update depends on
the results of queries that were issued since the last call
to completeWork.

Requires Transaction
or
Requires New Transaction

Updates from your component are performed by a
single database update, the update logic is independent
of any other query issued by the method, and you call
completeWork in each method that issues an update. In
other words, your component’s updates are already
atomic.

Supports Transaction

Your component’s methods make intercomponent
method calls, and the work done by called components
must be included in one transaction.

Requires Transaction
or
Requires New Transaction

Methods in the component interact with more than one
database, and updates to different databases must be
grouped in the same transaction (this also requires a
transaction coordinator that supports two-phase
commit to those databases).

Requires Transaction
or
Requires New Transaction

Transactions begun by your component must not be
affected by the outcome of transactions begun by other
components that call your component.

Requires New Transaction

Work done by your component must never be done as
part of a transaction.

Not Supported

CHAPTER 5 Understanding Transactions and Component Lifecycles

61

Determining when
transactions begin

After a base client instantiates a transactional component, the first method
invocation begins an EJB Server transaction. This instance is said to be the root
instance of the transaction. If the root instance invokes methods in other
transactional components, those components join the existing transaction.

The outcome of the transaction is determined by how the participating
components call the transaction state primitives discussed in “Using
transaction state primitives” on page 61.

Use the home interface for the called component
For transactions to occur with the intended semantics, you must perform
intercomponent calls using the home interface. Do not invoke another
component’s methods directly.

Using transaction
state primitives

EJB Server provides transaction state primitives that methods can call to direct
the outcome of the current transaction. Each component model provides an
interface containing methods for these primitives.

These methods end a component’s participation in a transaction (both cause the
current instance to be deactivated):

• completeWork The component finished its work for the current
transaction and should be deactivated when the method returns.

• rollbackWork The component cannot complete its work. Doom the
current transaction and deactivate the instance when the method returns.

These methods are used to maintain state after the method returns (they delay
deactivation of the component instance):

• continueWork Continue this component’s participation in the current
transaction after the method returns, and allow the transaction to be
committed if the component is deactivated. If a method calls no
transaction primitive, this is the default behavior.

• disallowCommit Continue this component’s participation in the current
transaction after the method returns, but roll back the transaction if the
component is deactivated before calling another primitive besides
disallowCommit.

These primitives can be used to query the state of the transaction (if any) in
which the method is executing:

• isInTransaction Query whether the current method is executing in the
context of a transaction.

The EJB Server transaction processing model

62

• isRollbackOnly Query whether the current transaction is doomed to be
rolled back or is still viable.

The following table describes how the transaction primitives are invoked in
Java components.

Table 5-2: Java transaction primitives

Any participating component can roll back the transaction by calling the
rollbackWork primitive; Java components can also cause a rollback by returning
an unhandled exception. Only the action of the root component determines
when EJB Server commits the transaction. The transaction is committed when
the root component returns with a state of completeWork and no participating
component has set a state of disallowCommit.

You can use the transaction state primitives in any component; the component
does not have to be declared transactional. Calling completeWork or
rollbackWork from methods causes early deactivation.

Transaction Timeout
property

The root instance’s Transaction Timeout property specifies the maximum
duration of an EJB Server transaction. The default timeout period is infinite.
You can configure finite timeouts in the Adaptive Server plug-in, as described
in “Resources tab component properties” on page 80.

A transaction begins when a base client activates a transactional component;
this component is the root component of the transaction. The root component’s
Transaction Timeout property determines the maximum duration of the
transaction.

If the transaction is not committed or rolled back within the allotted time, it is
automatically rolled back. In this case, the client receives the CORBA
TRANSACTION_ROLLEDBACK exception when it tries another method
invocation. The client’s object reference remains valid, and the transaction can
be retried.

Transaction
primitive

Java InstanceContext
method

completeWork completeWork

rollbackWork rollbackWork

continueWork continueWork

disallowCommit None. You can achieve the same effect
by calling, and then raising an
exception if deactivate is called before
the next method invocation.

isInTransaction inTransaction

isRollbackOnly isRollbackOnly

CHAPTER 5 Understanding Transactions and Component Lifecycles

63

Transactions are never rolled back in the middle of a method invocation. If the
timeout occurs during a method invocation, and the method does not commit
the transaction, the transaction is rolled back when the invocation completes.

Example
As discussed in “Benefits of using EJB Server transactions” on page 56, EJB
Server transactions are most useful when your application uses intercomponent
calls.

As an example, consider the scenario illustrated in “A transaction involving
multiple components” on page 56. The pseudocode below shows the logic
used to ensure that the work performed by the Registrar.reserveSeat() and
StudentBilling.addToBill() occurs within the same transaction.

In the Registrar component, the reserveSeat() method must check the number
of seats. If there is space for the new student, then the method adds the student,
decrements the count of available seats, and sets a state of completeWork. If a
seat is not an available, the method calls rollbackWork to roll back the current
transaction.

Here is the pseudocode for Registrar.reserveSeat():

check number of seats
if enough seats

decrement number of seats
add student to enrollment list
completeWork

else
rollbackWork

end if

The transaction attribute for Registrar must be Requires Transaction so that the
query for available seats and the update of available seats always occur in the
same transaction.

In the StudentBilling component, the addToBill() method must verify the
student’s credit. If the student does not already owe money, the method adds
the cost to the semester bill and sets a state of completeWork. If the student owes
money, the method calls rollbackWork to roll back the current transaction. Here
is the pseudocode for StudentBilling.addToBill():

check student’s balance
if balance > 0

add cost to bill
debit balance

The EJB Server transaction processing model

64

completeWork
else

rollbackWork
end if

The transaction attribute for StudentBilling must be Requires Transaction so that
the balance query, the billing calculation, and the debit of the student’s balance
always occur in the same transaction.

In the Enrollment component, the enroll() method first calls
Registrar.reserveSeat(). After Registrar.reserveSeat() returns, the method
checks whether the transaction is still viable using the isRollbackOnly primitive.
If the transaction is viable, the method calls StudentBilling.addToBill(). Here is
the pseudocode for Enrollment.enroll():

invoke Registrar.reserveSeat()
if isRollbackOnly returns true

return
else

invoke StudentBilling
completeWork

endif

The transaction attribute for Enrollment must be Requires Transaction so that
the work done by StudentBilling and Registrar occurs as a single transaction.

Dynamic enlistment in Bean-managed transactions
EJB Server supports dynamic enlistment for Bean-managed transactions,
which allows you to create a connection in one method of a stateful Bean, use
the connection in another method, and close the connection in a third method.

For a JDBC 2.0 shared connection (PooledConnection), the container manages
the single connection’s enlistment and deenlistment in transactions.

For XA connections, the Object Transaction Service libraries need to know all
the resources that will participate in a transaction when it starts. If you get an
XAConnection before you start a transaction, EJB Server enlists the
XAConnection in the transaction. If you start a transaction before you create
an XAConnection, EJB Server creates the connection and enlists it in the
transaction.

Dynamic enlistment allows you to do this:

conn1 = ds1.getConnection();
// A

CHAPTER 5 Understanding Transactions and Component Lifecycles

65

user_transaction.begin();
//
conn2 = ds2.getConnection();
conn3 = ds3.getConnection();
// B
conn2.close();
//
user_transaction.commit();
// C
conn3.close();
conn1.close();

Where at these points, the following are true:

A – conn1 is not part of any transaction.
B – conn1, conn2, and conn3 are part of the user_transaction.
C – conn1 and conn3 are not part of any transaction.

You can get only one connection per resource. Each getConnection call for the
same database returns the same connection.

 Warning! XA performance diminishes when connections span methods.

Entity Bean local diamonds

An entity object accessed from more than one path in the same transaction, as
shown in Figure 5-3, is called a diamond. A local diamond exists when the
access paths originate from, and the entity object resides on, the same server.

Typically, EJB Server uploads data from the database at the beginning of a
transaction and downloads data to the database at the end of a transaction.
When more than one program accesses an Entity Bean within the same
transaction, this can lead to inconsistent views of the data. For instance, if
Program B updates the entity’s data and then Program C reads the data,
Program C does not see the changes made by Program B. To solve this
problem, when EJB Server detects a diamond, it uploads data at method
invocation and downloads data when the method completes.

OTS/XA transaction model

66

Figure 5-3: Entity object diamond

OTS/XA transaction model
EJB Server includes CORBA Object Transaction Service (OTS) and X/Open
architecture (XA) as one of its distributed transaction models. The Transarc
Encina® transaction coordinator manages OTS/XA transactions for EJB
Server. You can define components, and component methods so that the
transaction coordinator automatically handles transactions (called implicit
control). You can also write code in the component or client to manage
transactions (called explicit control).

EJB Server provides for distributed transactions using the two-phase commit
protocol. Two-phase commit ensures that all changes to recoverable resources
(for example, multiple database servers) occur atomically, and the failure of
any resource to complete causes all other resources to undo changes. Two-
phase commit consists of a prepare phase and an execution phase. In the
prepare phase, the transaction coordinator validates that all resources are
available. In the execution phase, the transaction coordinator executes all
updates to the resources.

Note EJB Server does not currently support nested OTS/XA transactions (also
called subtransactions). If a method attempts to create a subtransaction, the
SubTransactionUnavailable exception is raised.

CHAPTER 5 Understanding Transactions and Component Lifecycles

67

An OTS/XA transaction coordinator uses XA resources to manage
transactions. An XA resource manages information using an XA-compliant
interface, for example, a database server or IBM’s MQSeries® (a message
queueing system). The XA interface standard is an element of the X/Open
Distributed Transaction Processing (DTP) model. Currently, Sybase provides
an XA-compliant interface through CT-Lib. In addition, EJB Server supports
jConnect, which is a JTA (Java Transaction API)-compliant JDBC driver. See
the “Managing XA resources” on page 159 for detailed information about
enabling and managing XA resources.

Component lifecycle
and transactional
behavior

A component with the OTS-Style transaction attribute enabled follows the
standard component lifecycle as described in “Component lifecycles” on page
51.

Generally, OTS transactions behave in the same way as described in “The EJB
Server transaction processing model” on page 55. For more information about
component transaction attributes, see “Transactional component attribute” on
page 58.

EJB Server does not support transactions that spawn over multiple EJB
Servers.

OTS/XA transaction model

68

69

C H A P T E R 6 Working with EJB Packages and
Components

This chapter describes how to install, modify, and deploy Enterprise
JavaBeans in EJB Server packages using the Adaptive Server plug-in.

If your site uses PowerJ, see the PowerJ documentation for information on
deploying EJB classes directly to EJB Server from PowerJ.

Packages and Enterprise JavaBean components
In the Adaptive Server plug-in, EJB Server packages allow you to group
related EJB components as a logical unit. Typically, components in a
package work together to provide a coherent service or function.

You can create JavaBeans from scratch or, more likely, import the
JavaBeans to EJB Server using the Adaptive Server plug-in. When you
import JavaBeans, they must be contained in a JAR file or Java class file.
The Adaptive Server plug-in reads the JAR file or class file and creates an
EJB Server package containing a component for each Bean in the file. See
“Importing Enterprise JavaBeans” on page 71.

EJB Server packages serve the following purposes:

Topic Page
Packages and Enterprise JavaBean components 69

Importing Enterprise JavaBeans 71

Installing components 74

Modifying components 75

Configuring component properties 75

Generating stubs and skeletons 86

Creating Enterprise JavaBeans 87

Modifying packages 93

Configuring package properties 94

Exporting packages to EJB-JAR files 95

Packages and Enterprise JavaBean components

70

• They are a unit of deployment Using the Adaptive Server plug-in, you
can import and export archived copies of the components in a package and
related application files.

• They allow you to control which users can access the
components Packages form one level in the EJB Server authorization
hierarchy. A package is not available to the user unless it is deployed to the
EJB Server’s Installed Packages folder. The Adaptive Server plug-in
allows you to map roles through each package for methods within the
package. See“Configuring package properties” on page 94 for
information about mapping roles.

Default packages When EJB Server is installed, the AseAuth default package is deployed
automatically to EJB Server. You will see this package in the Installed
Packages folder. AseAuth contains information you need to log in to EJB
Server from the Adaptive Server plug-in. Do not alter or delete this package.

CHAPTER 6 Working with EJB Packages and Components

71

Importing Enterprise JavaBeans
This section describes how you import Enterprise JavaBeans. These are the
usual methods you will use with EJB Server. See “Creating Enterprise
JavaBeans” on page 87 for directions for creating JavaBeans from scratch.

The Adaptive Server plug-in to Sybase Central supports two methods of
importing Enterprise JavaBeans:

• From an EJB-JAR file An EJB-JAR file contains the implementation
classes, interface classes, and deployment descriptor for one or more
Beans. You can use a Java development tool such as Sybase PowerJ to
define and develop Beans and create an EJB-JAR file. You can import
JAR files in the EJB 1.1 format. The Adaptive Server plug-in reads the
JAR file and creates a package containing a component for each Bean in
the JAR file.

• From an EJB class file The Adaptive Server plug-in can import
component and method information from Java class files. Use this method
if you have created a Bean’s interfaces and implementation class, but have
not created a deployment descriptor. You will need to manually configure
properties that would otherwise be read from the deployment descriptor.
You cannot import Java package files.

PowerJ deploys Enterprise JavaBeans directly to EJB Server
If you are developing in PowerJ, use the Enterprise JavaBean Deployment
Wizard to install EJB components in EJB Server. If using another IDE, use the
Adaptive Server plug-in to import the Bean as described below.

Note Finder methods in an entity Bean’s home interface can return
java.util.Collection or java.util.Enumeration. All EJB components defined in a
package or an EJB-JAR file must use the same type for finder method return
values.

Importing EJBs from
an EJB-JAR file

Importing an EJB 1.1 JAR file is a two-step process:

1 Deploy the JAR file to the repository.

2 Install the package in the Installed Packages folder in the Adaptive Server
plug-in.

Importing Enterprise JavaBeans

72

❖ Deploying an EJB 1.1 JAR file to the repository

1 Start the Adaptive Server plug-in if it is not already running, and connect
to the EJB Server where you want to install the component.

2 Double-click the Installed EJB Packages folder.

3 Select File | Deploy | EJB 1.1 JAR

The Deploy wizard displays.

4 If a package exists in your repository with the same name as the EJB JAR
display name, indicate whether the Adaptive Server plug-in should prompt
you before overwriting existing packages with the new definition.

5 Enter the path to the JAR file and click Next.

6 The Adaptive Server plug-in creates a new package in the repository that
contains a component for each Bean defined in the JAR file, printing status
messages and warnings to the Deploy Wizard. The new package has the
same name as the EJB JAR display name. If there is no display name, the
new package has the same name as the JAR file. For each Bean in the EJB-
JAR, EJB Server creates an EJB component with the same name as the ejb-
name element in the EJB-JAR deployment descriptor.

Home names for imported EJB components
EJB Server sets an imported Bean’s home name to the EJB Server default,
package/component, where package is the Adaptive Server plug-in
package name, and component is the Adaptive Server plug-in component
name.

❖ Installing a package in the Adaptive Server plug-in

1 Double-click the Installed EJB Packages folder. Choose File | Install
Existing Packages.

The Select dialog box displays.

2 Choose a package from the drop-down list of deployed packages in the
repository.

3 Click OK.

4 Select View | Refresh All.

The package appears in the Installed EJB Packages folder.

5 Optionally generate stubs and skeletons for the component Beans. See
“Generating stubs and skeletons” on page 86.

CHAPTER 6 Working with EJB Packages and Components

73

Use the status dialog as a to-do list
In the deployment status dialog box, the Adaptive Server plug-in displays
warnings for each setting that requires further attention before running the
application. You can copy and paste this text to a text editor to use as a to-do
list.

You may need to configure the following settings in the Component Properties
dialog box before running EJBs:

• For Beans that use container-managed persistence, the settings described
in Persistence for entity components

• Resource references, described in Configuring resource references

• EJB references (to components that are not installed with the JAR file),
described in Configuring EJB references

• Environment properties, described in Configuring environment properties

You may need to configure the Role mapping settings in the Package Properties
dialog box, described in “Role Mapping properties” on page 94.

Importing EJBs from
EJB class files

The Adaptive Server plug-in can import component and method information
from Java class files. Use this technique if you have created a Bean’s interfaces
and implementation class, but have not created a deployment descriptor. You
will need to manually configure properties that would otherwise be read from
the deployment descriptor afterwards.

❖ Importing EJB class files

Before importing class files
Verify that the code base under which the class file is deployed is specified in
the CLASSPATH environment variable, as inherited by the Adaptive Server
plug-in process.

Create a package to contain the component if necessary.

Import EJB class files as follows:

1 Specify the package in which to install the component as follows:

a Open the Installed EJB Packages folder.

b Double-click the package to which the component will be added.

2 Double-click the Add new component icon in the right window.

Installing components

74

 The Component wizard displays.

3 In the Type of Component window, select Import an EJB Class File, and
click Next.

4 Enter the component name and EJB class and interface names as follows:

• Component name The name of the component to be created in the
Adaptive Server plug-in, for example, FinanceBean.

• Component type Choose one of the following to match your
implementation:

• Remote interface The full path to the Java class file that contains
the Bean’s remote interface.

• Home interface The full path to the Java class file that contains the
Bean’s home interface.

• Bean class name The full path to the Java class file that contains
the Bean’s implementation class.

• Primary key class If defining an entity Bean, enter the full path to
the Java class file that contains the Bean’s remote interface. If
defining a session Bean, leave blank.

5 Click Next.

6 The Adaptive Server plug-in displays the Component Properties dialog
box. The Component’s type and Java classes have been filled in by the
importer. Specify values for the remaining properties before running the
Bean.

Installing components
Your component must be installed in a package before it can be run by
applications. Components that have the same name but are installed in different
packages are different components; modifying or deleting one does not effect
the other.

Type Description

StatelessSessionBean A stateless session Bean

StatefulSessionBean A stateful session Bean

EntityBean An entity Bean with Bean-managed
persistence.

CHAPTER 6 Working with EJB Packages and Components

75

❖ You can create a new component and install it to a package as follows:

1 Double-click the Installed Packages folder to expand it.

2 Double-click the package to which the component will be added.

3 Double-click the Add new component icon.

4 In the Component Wizard dialog box, select Define New Component, and
click Next.

5 Enter the component name in the Enter New Component Name dialog
box, and click Next.

The Summary Page window displays.

6 Verify the component name.

The new component appears in the package’s list of installed components.
Configure the settings as described in “Configuring component properties” on
page 75

Modifying components
❖ To modify a component:

1 Highlight the component you want to modify.

2 From the File menu, select one of the following options:

• Properties Displays the Component Properties window described
in “Configuring component properties” on page 75. Make any
modifications required, and click OK.

• Delete Removes the component from the package.

Configuring component properties
The Component Properties window allows you to configure the settings that
EJB Server uses to load the component and invoke its methods. Component
properties are organized on the following tabs:

Configuring component properties

76

General component properties
The General tab defines basic information about the component, including the
supported IDL interfaces, the component type, and implementation details.
These properties may have already been configured correctly by the import
process. The following table describes the window controls.

Tab Description

General Defines basic information about the component, including the
supported IDL interfaces, the component type, and implementation
details.

Transactions Defines the components transactional properties, such as how the
component participates in transactions and whether the component
explicitly commits its work.

Instances Defines how instances of the component are managed, including
instance creation, thread binding, and client/component bindings.

Resources Configures properties that govern the component’s use of server
and database resources.

Persistence Specifies the primary key type for EJB entity Beans.

All Properties Allows you to manually edit component property settings in the
EJB Server configuration repository. For advanced users.

CHAPTER 6 Working with EJB Packages and Components

77

Table 6-1: General component properties

Transactions tab component properties
The Transactions tab configures the component’s transactional properties.
Chapter 5, “Understanding Transactions and Component Lifecycles,”
provides useful background for the transactional properties.

Transaction attribute
values

The transaction attribute determines how methods in your component
participate in transactions; the setting affects all methods.

The transaction attribute can have the following values:

• Not Supported (The component-level default) The component’s
methods never execute as part of a transaction. If the component is
activated by another component that is executing within a transaction, the
new instance’s work is performed outside of the existing transaction.

• Supports The component can execute in the context of an EJB Server
transaction, but a connection is not required in order to execute the
component’s methods. If the component is instantiated directly by a base
client, EJB Server does not begin a transaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

Property Description Notes

Component
Type

Specifies the type of the
component, which can be:

EJB - Stateless Session
Bean A stateless session
bean EJB component.

EJB - Stateful Session
Bean A stateful session
Bean EJB component.

EJB - Entity Bean An entity
Bean EJB component.

EJB components must be
implemented in accord with version
1.1 of the Enterprise JavaBeans
specification.

Comment Specifies description of the
component. The description
can be up to 255 characters.

Enter a comment that describes the
purpose of the component.

Class The name of the class that
implements the Bean, in Java
dot notation.

Configuring component properties

78

• Required The component always executes in a transaction. When the
component is instantiated directly by a base client, a new transaction
begins. If component A is activated by component B, and B is executing
within a transaction, then A executes within the same transaction; if B is
not executing in a transaction, then A executes in a new transaction.

• Requires New Whenever the component is instantiated, a new
transaction begins. If component A is activated by component B, and B is
executing within a transaction, then A begins a new transaction that is
unaffected by the outcome of B’s transaction; if B is not executing in a
transaction, then A executes in a new transaction.

• Mandatory Methods may only be invoked by a client that has an
outstanding transaction.

• Bean Managed For EJB session Bean components only. The component
can explicitly begin, commit, and rollback new, independent transactions
by using the javax.transaction.UserTransaction interface. Transactions
begun by the component execute independently of the client’s transaction.
If the component has not begun a transaction, the component’s database
work is performed independently of any EJB Server transaction.

Stateless session Beans can use this attribute, but transactions begun in a
method must be committed or rolled back before that method returns.
Otherwise, EJB Server logs an error and returns an exception to the client.
Stateful session Beans can create transactions that remain open across
several method calls.

• Never The component’s methods never execute as part of a transaction,
and the component may cannot be called in the context of a transaction. If
a client or another component calls the component with an outstanding
transaction, EJB Server throws an exception.

Instances tab component properties
Properties on the Instances tab configure how instances of the component are
created and bound to server-side threads and client-side object references. The
properties are as follows:

CHAPTER 6 Working with EJB Packages and Components

79

Property Description

Concurrency Enabling this option allows multiple method invocations to occur
simultaneously. Concurrent access can decrease the response time of
client method invocations. Enable this option for any component that
is thread safe.

If this option is disabled, EJB Server serializes all method calls to the
component.

Concurrency applies to execution of all instances

Concurrency option disabled
If the Sharing and Bind Thread options are selected, the Concurrency
option is implicitly disabled.

Bind Object Applies to stateful session Beans only. When this property is enabled,
an instance is bound to a client’s proxy reference until the client
destroys or releases the reference.

If you enable this option, your component must be thread-safe; that
is, one instance must be able to execute on multiple threads
concurrently. A client may call the proxy from multiple threads, or
pass the proxy to another process or component; consequently, there
is no guarantee that calls are serialized with Bind Object enabled.

Component instances are destroyed when the client instance
reference times out (the time out period is configured on the
Instances tab–see “Instances tab component properties” on page 78).
Instances are not pooled.

Bind Object is most commonly used for storage components, which
are used to store a component’s state information in a database. See
“Persistence tab component properties” on page 82 for more
information on storage components.

Bind Thread When this option is enabled, component instances are bound to the
creating thread. Enable this option if the component uses thread-local
storage.

If the Bind Thread option is selected, multiple instances may still run
concurrently on separate threads. To ensure that only one instance is
active at a time, make sure that the Concurrency option is not
selected.

When Bind Thread is enabled, instances are pooled if the Pooling
option is enabled. The thread is pooled with the instance in this case.

Pooling When this option is enabled, component instances are always pooled
after deactivation. If you enable the Pooling option in the Adaptive
Server plug-in, your component is always pooled, and these methods
are not called.

Configuring component properties

80

Resources tab component properties
Properties on this tab govern the allocation and deallocation of resources
required by the component.

• Transaction Timeout A component’s Transaction Timeout property
specifies the maximum duration of an EJB Server transaction. See Chapter
5, “Understanding Transactions and Component Lifecycles,” for more
information on EJB Server transactions.

Sharing When this option is enabled, a single, shared instance of the
component services all client requests.

A shared component can store data in instance variables. However, if
the component’s Concurrency option is also selected, you must add
code to synchronize access to instance variables.

Sharing setting overrides Pooling setting
If you select both Sharing and Pooling, Sharing takes precedence.

Stateless For EJB session Beans, the Stateless option is set correctly when the
component type is set, and must not be changed.

Transient For EJB stateful session Beans, this property must be enabled for the
standard EJB passivation and activation to occur. It must be disabled
if you want to configure a stateful session Bean to support failover
using the Persistence tab properties (see “Persistence tab component
properties” on page 82).

Reentrant When this option is enabled, an instance is allowed to participate in
loopback call sequences, which are call sequences where one of the
Bean’s methods calls another component which in turn calls a
method in the calling Bean instance. Most Beans are not
implemented to support reentrancy, and you must not enable this
option unless the Bean developer has verified that the
implementation allows it.

Property Description

CHAPTER 6 Working with EJB Packages and Components

81

The timeout period is configured in seconds, with 0 indicating infinity
(that is, no timeout). If the component’s Transaction Timeout property is
not set, the default is inherited from the server properties. The default for
a new server is 0. When specifying timeouts, a resolution of 5 seconds is
recommended. EJB Server checks for timeouts after each method returns.
Your component will not be deactivated in the middle of an invocation
because of a timeout. When a transaction times out, the next method
invocation in the client-side ORB throws the
CORBA::TRANSACTION_ROLLEDBACK system exception.

To set Transaction Timeout for a server, display the All Properties tab in
the Server Properties window. Then set the
com.sybase.jaguar.server.tx_timeout property.

Network transport time is included in the measured timeout period. You
may need to configure a larger timeout period if clients connect over slow
networks.

• Instance Timeout Specifies how long, in seconds, an active component
instance can remain idle between method calls before the client’s proxy
becomes invalid. If the timeout expires, the instance is automatically
deactivated. Instance Timeout is useful for ensuring timely deactivation of
stateful components. (“Stateful versus stateless components” on page 54
explains this term.) The setting has no effect for stateless components.

When the timeout period is exceeded, EJB Server deactivates the
component and invalidates the client’s object reference. If the client
attempts another method invocation, the client-side ORB throws the
CORBA::OBJECT_NOT_EXIST exception. At this point, the client must
create a new proxy instance for the component.

This property is not set for new components; the component inherits a
default value from the server properties. At the server level, configure the
instance timeout by displaying the All Properties tab in the Server
Properties window. Then set the com.sybase.jaguar.server.timeout
property.

The timeout period is configured in seconds, with 0 indicating infinity
(that is, no timeout). If the component’s Instance Timeout property is not
set, the default is inherited from the server properties. The default for a
new server is 0. When specifying timeouts, a resolution of 5 seconds is
recommended.

Network transport time is not included in the measured timeout period.
You may need to configure a larger timeout period if clients connect over
slow networks.

Configuring component properties

82

Persistence tab component properties
The Persistence tab allows you to specify an EJB entity Bean’s primary key and
configure settings that allow EJB Server to save component state to a database
server.

Table 6-2 summarizes the Persistence settings. See Chapter 8, “Managing
Persistent Component State,” for detailed information on these fields.

CHAPTER 6 Working with EJB Packages and Components

83

Table 6-2: Persistence tab component properties

Field Description

Persistence Specifies whether component state is saved, and if so, how. The
available options are:

• None The default. The component’s state is not stored in a
database.

• Java Serialization For EJB stateful Session Beans only. The
component implementation class is serialized and deserialized to
save and restore component state.

• Component Class Your component implementation manages
persistence. Used for EJB entity Beans.

• Automatic Persistent State EJB Server manages the persistent
state of your component.

Primary Key The primary key for EJB entity Beans. Specify the IDL type of the
components primary key. For example: foo::bar::MyPK.
Components with a primary key must have a findByPrimaryKey
method in their home interface, and can have additional finder
methods that allow clients to look up instances that match a desired
primary key.

Unless you have defined an entity Bean by importing class or EJB-
JAR files, you must define the primary key type yourself. For an EJB
entity Bean, choose from the types listed in “Allowable primary key
types” on page 89.

Storage
Component

Specifies the name of a component that reads and writes component
state information from a remote database server. Required when
using automatic persistence, or when using component-managed
persistence with an implementation that delegates to EJB Server’s
built-in storage component.

Connection
Cache

Specifies the connection cache used by the storage component. The
cache must be installed on all servers where your component runs
and allow by-name access.

Table Specifies the name of the database table to store component state
information. Create the table in the default database rather than in
the dbname..table.

Time Out This setting is reserved for future use.

Configuring component properties

84

All Properties tab
The All Properties tab allows you to edit component property settings as they
are stored in the EJB Server configuration repository. You can only modify or
delete properties that you have added—you cannot modify or delete default
properties, such as the Instance Timeout property.

❖ To add a property:

1 Fill in the Add fields as follows:

a Enter the property name in the Name field

b Enter the value in the Value field.

2 Click Add and then OK.

❖ To delete a property:

1 Highlight the property you want to delete:

2 Click Delete and then OK.

The following component properties can be configured only from the All
Properties tab:

Time Stamp When using a mapped database table, specifies the timestamp used
for optimistic concurrency control. Specify one of the following:

• A column name The name of a column in the mapped table that
is incremented in each update. By default, EJB Server uses 4-byte
integer timestamp. You can also use a 16-byte binary value, but
to do so, you must set the
com.sybase.jaguar.component.ts.length property to
binary(16).

• “None” Enter “none” to disable optimistic concurrency control.
This setting is not recommended.

• No value If you leave the Time Stamp field blank, EJB Server
uses all column values to perform optimistic concurrency control.

For best performance, use a 4-byte integer timestamp column. The
timestamp column need not be mapped to the component’s
persistent state fields. 16-byte binary timestamp values are not
usable when other processes (besides EJB Server) update a table.

Field Description

CHAPTER 6 Working with EJB Packages and Components

85

com.sybase.jaguar.component.keys For an EJB entity Bean, specifies the
name of an IDL typedef for a sequence of the Bean’s primary key structures.
This type is used when generating the skeleton and implementation classes for
the component.

When you manually specify a value for the Primary Key field on the
Persistence tab, EJB Server sets this property to module::componentKeys
where module is the module containing the primary key type, and component
is the component name. The Adaptive Server plug-in defines the type if it does
not exist, using the following structure:

typedef <sequence pk> componentKeys

where pk is the primary key type, and component is the component name.

Set the com.sybase.jaguar.component.keys property only when you have
manually defined a sequence that uses another naming convention or that is
located in another module.

If you have used PowerJ or the Adaptive Server plug-in import feature to
import an entity Bean, the com.sybase.jaguar.component.keys typedef may use
a different naming convention.

com.sybase.jaguar.component.tx_outcome Determines whether an
exception is thrown to the client when a transaction is rolled back. Sybase
recommends that you do not alter this setting.

com.sybase.jaguar.component.refresh This property specifies whether
the component can be refreshed. If the value is false, the File | Refresh option
has no effect for the component. Allowable values are true and false. The
default is true.

com.sybase.jaguar.component.java.classes For Java components, this
property lists additional java classes that must be reloaded when the component
is refreshed. The property takes as values a list of fully qualified class names
separated by commas. You can specify all classes in a package using wildcards,
as in this example:

com.xyz.MyPackage.*

You can specify all classes in a JAR file by specifying the JAR file name, as in
this example:

MyEntityBean.jar

The JAR file must be deployed in the $SYBASE/$SYBASE_EJB/java/classes
subdirectory.

Generating stubs and skeletons

86

Copies of the specified classes must be deployed under one of the following
locations. When loading classes required by Java components, EJB Server
searches for classes in this order:

1 Any JAR file that is listed in the
com.sybase.jaguar.component.java.classes property and deployed in the
EJB Server SYBASE/$SYBASE_EJB/java/classes subdirectory.

2 The class tree based at the SYBASE/$SYBASE_EJB/java/classes
subdirectory.

3 The class tree based at the SYBASE/$SYBASE_EJB/html/classes
subdirectory.

com.sybase.jaguar.component.control Specifies the name of the IDL
control interface. The control interface defines methods called by the EJB
Server in response to changes in the instance lifecycle. The choices are
summarized in this table:

Generating stubs and skeletons
You must generate stubs and skeletons for a Bean before it can run.

❖ To generate stubs and skeletons for a component Bean:

1 Highlight the component icon.

2 Choose File | Generate Stubs/Skeletons

The stubs and skeletons dialog box opens.

3 Select Generate Skeleton.

4 Enter a code base for the generated files. Sybase recommends the
$SYBASE/$SYBASE_EJB/java/classes subdirectory.

5 Click OK.

Control Interface Description

JaguarEJB::EntityBean For EJB entity Beans.

JaguarEJB::StatefulSessionBean For EJB stateful session Beans.

JaguarEJB::StatelessSessionBean For EJB stateless session Beans.

CHAPTER 6 Working with EJB Packages and Components

87

Creating Enterprise JavaBeans
In most cases it is easiest to define a Bean using one of the import methods
described in “Importing Enterprise JavaBeans” on page 71. However, if you
prefer editing IDL to Java, you may follow the technique described here.

❖ Creating a new EJB component from scratch:

Follow this procedure to create a new EJB component and define the home and
remote interface.

1 Double-click the Installed Packages folder that will contain the Enterprise
JavaBean.

2 Select the Add new component icon in the right window.

The Component wizard displays.

3 In the Add Component dialog box, select the Define New Component
check box and click Next.

4 In the Name of Component dialog box, enter a name for the component
and click Next.

5 In the Summary Page, click Finish to create the object.

6 Display the Component Properties dialog box. Make the following
changes on the General tab:

a Set the Component Type to correspond to one of the following values:

b In the Class Type field, enter the name of the Java class that will
implement your Bean, for example, foo.bar.MyBeanImpl.

Note The Home Interface Class, Remote Interface Class, and
Primary Key Class fields cannot be edited. These fields are set
automatically after the Bean’s IDL interfaces and datatypes have been
defined. You can change them by changing the component’s IDL
interfaces and types in subsequent steps.

Component Type To indicate

EJB - Entity Bean An entity Bean

EJB - Stateful Session Bean A stateful session Bean

EJB - Stateless Session Bean A stateless session Bean

Creating Enterprise JavaBeans

88

7 If you are defining a stateful session Bean, optionally switch to the
Persistence tab and enter a time limit in the Time Out field. This value
specifies how long, in seconds, that a client can hold an instance reference
without making any calls. If you do not enter a value, or you specify 0,
client references do not expire.

8 If you are creating an entity Bean, specify the primary key as follows:

a Define the primary key type as one of the “Allowable primary key
types” on page 89.

b Click on the Persistence tab, and type the name of the IDL primary
key type into the Primary Key field. The Persistence field must be set
to Component Class (the default). Leave all other fields besides
Persistence and Primary Key blank.

9 Click OK to close the Component Properties dialog box.

10 The Adaptive Server plug-in has created default home and remote
interfaces named package::componentHome and package::component,
respectively, where package is the Adaptive Server plug-in package name,
and component is the component name.

11 Edit the home interface methods, following the design patterns described
in “Defining home interface methods” on page 89.

12 Edit the remote interface methods. See “Defining remote interface
methods” on page 91.

Note If portability to other EJB Servers is required, use only in parameters
in remote interface methods.

13 If creating an entity Bean with container-managed persistence, configure
the persistence settings as described in Chapter 8, “Managing Persistent
Component State.”

14 Optionally configure the transaction properties for each method in the
home and remote interfaces, or if all are the same, configure the
component’s transaction properties.

15 Generate stubs and skeletons for the component as follows:

a Highlight the component icon.

b Choose File | Generate Stubs/Skeletons.

The stubs and skeletons dialog box displays.

c Select Generate Skeletons and click OK.

CHAPTER 6 Working with EJB Packages and Components

89

d Specify a code base for the generated files.

e Click OK.

16 The Adaptive Server plug-in generates a template for the Bean
implementation class suffixed with .new, for example
MyBeanImpl.java.new. Use this template as the basis for your Java
implementation. The Adaptive Server plug-in also generates Java
equivalents for the home and remote interfaces, and for an entity Bean, the
primary key type.

17 Compile the component source files, and make sure they are correctly
deployed to EJB Server. See “Deploying component classes” on page 92.

18 If you are testing the component with a Java applet, generate and compile
stubs using the $SYBASE/$SYBASE_EJB/html/classes subdirectory as the
Java code base.

Allowable primary key
types

Define an entity Bean’s primary key as one of the following:

An IDL structure The structure should reflect the primary key for the
database relation that the entity Bean represents. In other words, add a field for
each column in the primary key. Define the structure to match the intended Java
package and class name. For example, if the Java class is to be foo.bar.PK1,
define a new structure PK1 in module foo::bar.

The name of a serializable Java class Enter the name of a serializable
Java class, for example: foo.bar.MyPK.

The IDL string type Use string if the key relation has only a string column.
In Java, the mapped primary key is java.lang.String.

Defining home
interface methods

You can add methods to a home interface using a text editor. However, the
method signatures in a home interface must follow the design patterns
described here to ensure that the generated code works as intended.

Patterns for create methods All Beans can have create methods, which
clients call to instantiate proxies for session Beans and insert new data for
entity Beans.

Create methods must return the Bean’s IDL remote interface type and raise
CtsComponents::CreateException. Create methods can take any number of in
parameters. To distinguish multiple overloaded create methods, append two
underscores and a unique suffix. (This is the standard Java to IDL mapping for
overloaded method names. When generating stubs for Java, EJB Server
removes the underscores and suffix from the stub method name). The pattern
is as shown below:

remote-interface create

Creating Enterprise JavaBeans

90

(
in-parameters

) raises (CtsComponents::CreateException);

remote-interface create__suffix1
(

in-parameters
) raises (CtsComponents::CreateException);

Patterns for finder methods Only entity Beans can have finder methods.
Clients call finder methods to look up entity instances for existing database
rows. Names of finder methods typically have names beginning with find.

Every entity Bean must have a findByPrimaryKey method that matches the
following pattern:

remote-interface findByPrimaryKey
(

in pk-type primaryKey
) raises (CtsComponents::FinderException)

where remote-interface is the IDL remote interface, and pk-type is the IDL type
of the primary key.

Entity Beans can have additional finder methods of two types:

• Those that return a single remote interface instance and raise
CtsComponents::FinderException, as shown in the pattern below:

remote-interface findSuffix
(

in-parameters
) raises (CtsComponents::FinderException)

where remote-interface is the IDL remote interface, Suffix is a name suffix
other than ByPrimaryKey, and in-parameters is a valid parameter list
composed solely of in parameters.

• Those that return a sequence of instances whose primary keys match a
specified search criteria. The pattern is:

componentList findSuffix
(

in-parameters
) raises (CtsComponents::FinderException)

where component is the component name, Suffix is a name suffix other
than ByPrimaryKey, and in-parameters is a valid parameter list composed
solely of in parameters.

CHAPTER 6 Working with EJB Packages and Components

91

Sequence types are automatically generated
The Adaptive Server plug-in creates IDL typedefs defining a sequence of
remote interface methods and a sequence of primary keys when you set the
Primary Key field on the Persistence tab of the Component Properties
dialog box. The type for a sequence of remote interface instances is
componentList and a sequence of primary keys is componentKeys, where
component is the component name.

Defining remote
interface methods

The IDL for your Enterprise Bean’s remote interface must define a remove
method and the business methods implemented by the Bean.

remove methods are called by clients to delete the database row associated with
an entity Bean, and to release a reference to a session Bean instance. remove
methods have the following signature:

void remove
(
)
raises (::CtsComponents::RemoveException);

You can define business methods using a text editor. The procedure is the same
as for any other IDL interface.

Note If portability to other EJB Servers is required, use only in parameters in
remote interface methods.

❖ To configure EJB 1.1 role references:

1 If necessary, define new Adaptive Server roles to be used by callers of the
component. You can create roles in the Adaptive Server plug-in in the
Roles folder under the Adaptive Server icon. Adaptive Server and EJB
Server share roles.

2 Verify that J2EE roles are mapped to Adaptive Server roles in the
properties of the package where the component is installed; check the Role
Mappings tab in the Package Properties window–see “Configuring
package properties” on page 94. You must map a J2EE role name for each
role to be used in role references.

Creating Enterprise JavaBeans

92

Deploying component
classes

If you are creating components from scratch in the Adaptive Server plug-in to
Sybase Central, you must follow the steps in this section to deploy the
component class and other classes that it depends on. If you deploy from
PowerJ, PowerJ performs these steps for you. If you are using another EJB
development tool that can export EJB-JAR files, import the EJB-JAR file as
described in “Importing Enterprise JavaBeans” on page 71. If you import an
EJB-JAR file that calls EJB Server components that are not implemented in the
same JAR file, you must list the stub classes for the called components in the
custom class list as described below.

EJB Server supports hot refresh of components by using a Java class loader.
This feature speeds the development process by allowing you to deploy new
class versions without restarting EJB Server. Repeat the steps below to deploy
new versions of your implementation.

❖ To deploy EJB component classes:

1 Deploy the component class files, stub and skeleton files, and other classes
required by the implementation to EJB Server. For example, you may need
to copy stubs for user defined types and utility classes that are in your
component’s package.

If deploying class files, place each class in their respective
$SYBASE/$SYBASE_EJB/java/classes package subdirectories. If
deploying a JAR file, place it in the $SYBASE/$SYBASE_EJB/java/classes
subdirectory.

The preferred code base is $SYBASE/$SYBASE_EJB/java/classes
For security reasons, it is preferable to deploy Java components to the
$SYBASE/$SYBASE_EJB/java/classes subdirectory or some other
directory that is not accessible to HTTP downloads. Deploying to this
directory also allows your component to be refreshed, and allows you to
deploy classes in JAR files without reconfiguring the server’s
CLASSPATH environment variable. If you deploy to another location,
make sure it is listed in the server’s CLASSPATH environment variable.

2 Use the Adaptive Server plug-in to configure the component’s custom
class list, specifying the classes that must be loaded when your component
is loaded or reloaded, as described in “The custom class list” on page 93.

3 Use the Adaptive Server plug-in to refresh the component by highlighting
its icon and choosing View | Refresh All. You can also refresh the
component by refreshing the package, application, or server where it is
installed.

CHAPTER 6 Working with EJB Packages and Components

93

The custom class list To support component refresh, you must specify the
custom class list to be loaded when a component is refreshed in the
“com.sybase.jaguar.component.java.classes” on page 85 component property.
This property must be set on the Properties tab in the Component Properties
dialog box. “com.sybase.jaguar.component.java.classes” on page 85 describes
the syntax of this property.

The custom class list for an EJB component must contain these classes:

• These packages:

com.sybase.ejb.*;javax.naming.*;javax.naming.spi.*

• Stubs for all components that your component calls. If the called
component’s classes are loaded in a JAR file, list the JAR file name in the
custom class list.

• Other classes that your component loads and passes as parameters or
return values for intercomponent calls, or passes to clients as method
return values and output parameter values.

• Classes that extend javax.naming.InitialContext or other javax.naming
classes and that are called by your component.

Troubleshooting ClassCastException errors
When calling javax.naming.InitialContext.lookup, if you see NamingContext
exceptions with root-cause exception ClassCastException, check for the
following errors:

• You are casting to an incorrect type (check the class name of the object
returned by lookup).

• Your component has refresh enabled, and the custom class list does not
contain some required classes.

• Your component has refresh enabled, and calls a component that has
refresh disabled or vice-versa.

Modifying packages
❖ To modify an existing package:

1 Highlight the package you want to modify.

Configuring package properties

94

2 From the File menu, select one of the following options:

• Properties Displays the Package Properties window described in
“Configuring package properties” on page 94. Make any
modifications required, and click Ok.

• Delete Removes the package from EJB Server and from the
repository.

Configuring package properties
The Package Properties window has three tabs:

• General

• Role Mapping

• All Properties

General tab properties The following table describes the properties on the General tab.

Table 6-3: Package properties: General tab

Role Mapping
properties

You can map permissions for component methods to roles defined in Adaptive
Server. See “Permissions and roles” on page 15 for more information about
roles in EJB Server.

If you want to restrict access to a Bean, you must, for each method:

• Include a J2EE role at the method level when you create the Bean.

• Map the J2EE role to an Adaptive Server role in the Role Mapping dialog
box.

❖ To map a J2EE role to an Adaptive Server role:

1 If necessary, define a new Adaptive Server role. See the Adaptive Server
Administration Guide for instructions.

2 Select the Role Mapping tab from the Package Properties window.

3 Click Add. Double-click the J2EE role and enter a J2EE role name. You
can also enter a description for the role in the provided field.

Property Description Comments/Example

Description A description of the package.
The description can be up to
255 characters.

View or change the description of
an existing component or set the
description of a new one.

CHAPTER 6 Working with EJB Packages and Components

95

4 Select an Adaptive Server role from the drop-down list. This is the role
from which the J2EE role inherits its permissions and members.

5 Repeat steps 2 through 4 for each method in the package with an encoded
J2EE role.

All Properties settings The All Properties tab allows you to edit package property settings as they are
stored in the EJB Server configuration repository. You can only delete
properties that you have added—you cannot delete default properties, such as
the com.sybase.jaguar.package.components property.

❖ To edit package properties:

1 Look for the property name in the list of properties. If it is displayed,
highlight the property and click Modify. Otherwise, click Add.

2 If adding the property, fill in the Add Property fields as follows:

• Enter the property name in the Name field

• Enter the value in the Value field.

3 If modifying a property, edit the displayed value in the Modify Property
window.

Exporting packages to EJB-JAR files
You can create an EJB-JAR file that contains the Java classes and deployment
descriptors for the EJB components installed in an EJB Server package. The
JAR file can be deployed to another EJB Server or any EJB-compatible server.

Exporting JAR files requires the Java Development Kit (JDK) version 1.2.2.
The EJB Server installation enables the JDK for exporting packages. See the
installation guide for your platform for information.

❖ Exporting an EJB-JAR file

1 In the Installed Packages folder, highlight the package to export and
choose File | Export | EJB 1.1 JAR.

2 Enter the path and file name for the new JAR file and click Next.

3 The Adaptive Server plug-in creates the JAR file, displaying status
messages in the Export wizard.

Exporting packages to EJB-JAR files

96

97

C H A P T E R 7 Creating Enterprise JavaBean
Clients

This chapter describes how to implement EJB clients. For general
information on implementing Enterprise JavaBeans and EJB clients,
please see the EJB Specification, available for download from Sun
Microsystems Web site at http://java.sun.com/products/ejb/docs.html.

If your site uses PowerJ, please see the PowerJ documentation for
information on code generation wizards for EJB clients.

Contents

Developing an EJB client
Follow the steps in the table below to create an EJB client:

Topic Page

Developing an EJB client 97

Generating EJB stubs 98

Instantiating home interface proxies 100

Instantiating remote interface proxies 104

Calling remote interface methods 106

Managing transactions 106

Serializing and deserializing Bean proxies 107

Step Action For more information

1 Generate EJB stubs. See “Generating EJB stubs” on page
98.

2 Add code to create the initial
naming context and instantiate the
home interface proxies.

See “Instantiating home interface
proxies” on page 100.

3 Add code to instantiate remote
interface proxies.

See “Instantiating remote interface
proxies” on page 104.

4 Add code to call remote interface
methods.

See “Calling remote interface
methods” on page 106.

Generating EJB stubs

98

Generating EJB stubs
Stub classes act as proxies for an instance of the EJB component. You can
generate EJB stubs for components that are implemented in any of the EJB
Server supported component models.

❖ To generate Java source files for stub classes:

1 Highlight a component to generate stubs for all interfaces and types
required by a component.

2 Select File | Generate Stubs/Skeletons. The Generate Stubs & Skeletons
dialog box displays.

3 Select the Generate Stubs option and the Generate Java Stubs option. Enter
values in the Stubs fields as follows:

• Java Version Choose Java 2.0 if any home interface has finder
methods that return java.util.Collection.

• Java Code Base Enter the top-level directory path where
generated files should be created.

The path must be valid. It can include a drive and as many directories
as you want. You can use %SYBASE%\%SYBASE_EJB% (Windows
NT) or $SYBASE/$SYBASE_EJB (UNIX) to specify subdirectories
within the EJB Server installation directory, for example:

%SYBASE%\%SYBASE_EJB%\html\classes

Other variable substitutions or shell aliases such as “~” to indicate
your home directory are not allowed.

If you specify a relative path, such as myclasses, the path is
interpreted relative to the EJB Server
$SYBASE/$SYBASE_EJB/html/classes directory.

4 Click OK.

5 Optionally add code to control
transactions and serialize and
deserialize instances.

See:

• “Managing transactions” on page
106

• “Serializing and deserializing Bean
proxies” on page 107

Step Action For more information

CHAPTER 7 Creating Enterprise JavaBean Clients

99

Java packages
For each IDL module, Java equivalents for all interfaces, types, and exceptions
that are defined in the module are generated to a single Java package. The
default Java package name is specified by the module’s name or its Javadoc
package comment.

If the module has a line of this form in the doc comment, stubs are written in
the specified Java package:

** <!-- javaPackage dotty-package -->

where dotty-package is the dot-format Java package name.

If the doc comment does not specify a Java package, stubs are generated to a
package that matches the IDL module name. For example, stubs for module
foo::bar are generated in Java package foo.bar.

Compiling stubs
For each IDL interface that is assigned to a component, the Adaptive Server
plug-in generates a Java interface with the same name as the IDL interface, a
stub class that implements that interface, a helper class, and a holder class. For
example, for an IDL interface named Calculator::Calc, the Adaptive Server
plug-in creates the source files listed in the following table:

Table 7-1: Java stub source files for example interface calc

The Adaptive Server plug-in creates stubs for each interface and datatype
defined in a module. If your component references a module that contains
multiple interfaces, you will find that additional stub files are generated besides
the stubs for the interfaces that are directly implemented by your component.

Compile the stub classes with a JDK 1.2 compiler. Make sure that the
CLASSPATH setting contains the code base directory and the EJB Server
html/classes subdirectory. For example:

File Name Purpose

Calc.java Defines an interface with methods equivalent to the
component’s methods.

Calc_Stub.java Class that implements the interface.

CalcHolder.java Used when interface references are passed as an inout or
output parameter.

Instantiating home interface proxies

100

set CLASSPATH=%SYBASE\SYBASE_EJB%\html\classes;
%SYBASE\SYBASE_EJB%\java\classes;%SYBASE\SYBASE_EJB%
javac *.java

Instantiating home interface proxies
EJB clients use the Java Naming and Directory Interface (JNDI) to resolve
logical Bean home names to proxy instances for a Bean’s home interface. Each
EJB container vendor provides an implementation of this interface that works
with the vendor’s server and network protocol.

Obtaining an initial naming context
The core JNDI interface used by client applications is javax.naming.Context,
which represents the initial naming context used to resolve names to Bean
proxies. To obtain an initial naming context, initialize a java.util.Properties
instance and set the properties listed in Table 7-2. Pass the properties instance
to the javax.naming.InitialContext constructor. The code fragment below shows
a typical call sequence:

import javax.naming.*;

static public Context getInitialContext() throws Exception {
java.util.Properties p = new java.util.Properties();

// Sybase implementation of InitialContextFactory
p.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sybase.ejb.InitialContextFactory");

// URL for the Server’s IIOP port
p.put(Context.PROVIDER_URL, "iiop://myhost:9000");

// Username "pooh", password is "tigger2"
p.put(Context.SECURITY_PRINCIPAL, "pooh");
p.put(Context.SECURITY_CREDENTIALS, "tigger2");

// Now create an InitialContext that uses the properties
return new InitialContext(p);

}

CHAPTER 7 Creating Enterprise JavaBean Clients

101

EJB servers from different vendors require different InitialContext property
settings. If you are creating a client application that must be portable to other
EJB servers, use an external mechanism to specify properties rather than hard-
coding values in the source code. For example, in a Java application use
command-line arguments or a serialized Java properties file.

Sybase InitialContext
properties

The Sybase InitialContext implementation recognizes the properties in the
following table. You can create multiple contexts with different properties. For
example, you might create one context for proxies that connect with plain IIOP
and another for proxies that connect using SSL.

Instantiating home interface proxies

102

Table 7-2: Sybase EJB 1. 1 InitialContext Properties

Property name Description

java.naming.factory.
initial

Specifies the fully qualified Java class name of the class
that returns javax.naming.InitialContext instances that
interact with the naming provider. Use
com.sybase.ejb.InitialContextFactory for EJB
Server clients.

java.naming.provider.
url

Specifies the URL to connect to the EJB name server. Set
the value to a URL with the following format:

iiop://hostname:iiop-port/initial-context

where:

• hostname is the host machine name for the EJB Server
that serves as the name server for your application. If
omitted, the default is localhost.

• iiop-port is the IIOP port number for the server.

• initial-context is the initial naming context. This can be
used to set a default prefix for name resolution. For
example, if you specify USA/Sybase/, all names that you
resolve with the context are assumed to be relative to
this location in the name hierarchy. When specifying the
initial context, the trailing slash is optional; it is added
automatically if you do not specify an initial context that
ends with a slash.

If you do not set this property, the default is
iiop://localhost:9000/.

java.naming.security.
principal

Specifies the user name for the EJB Server session.
Required if user name/password authentication is enabled
for your EJB Server.

java.naming.security.
credentials

Specifies the password for the EJB Server session.
Required if user name/password authentication is enabled
for your EJB Server.

com.sybase.ejb.
RetryCount

Specify the number of times to retry when the initial
attempt to connect to the server fails. The default is 5.

com.sybase.ejb.
RetryDelay

Specify the delay, in milliseconds, between retry attempts
when the initial attempt to connect to the server fails. The
default is 2000.

CHAPTER 7 Creating Enterprise JavaBean Clients

103

Resolving Bean home names
Call the Context.lookup method to resolve a Bean’s home name to a proxy for
the Bean’s home interface. If the server where the Bean is installed has a name
context configured, pass the server’s name context as part of the Bean home
name, in the format:

Server-name-context/Bean-home

com.sybase.ejb.
socketReuseLimit

Specify the number of times that a network connection may
be reused to call methods from one server. The default is 0,
which indicates no limit. The default is ideal for short-lived
clients.

In Sybase testing, settings between 10 and 30 proved to be
a good starting point. If the reuse limit is too low, client
performance degrades.

com.sybase.ejb.
GCInterval

Specifies how often the ORB forces deallocation (Java
garbage collection) of unused class references. Though this
property is set on an individual ORB instance, it affects all
ORB instances. The default is 30 seconds. The default is
appropriate unless you have set an idle connection timeout
of less than 30 seconds. In that case, you should specify a
lower value for the garbage collection interval, since
connections are only closed while performing garbage
collection. In other words, the effective idle connection
timeout ranges from the idle connection timeout setting to
the smallest integral multiple of the garbage collection
interval.

com.sybase.ejb.
IdleConnectionTimeout

Specifies the time, in seconds, that a connection is allowed
to sit idle. When the timeout expires, the ORB closes the
connection. The default is 0, which specifies that
connections can never timeout. The connection timeout
does not affect the life of proxy instance references; the
ORB may close and reopen connections transparently
between proxy method calls. Specifying a finite timeout for
your client applications can improve server performance. If
many instances of the client run simultaneously, a finite
client connection timeout limits the number of server
connections that are devoted to idle clients.

Property name Description

Instantiating remote interface proxies

104

Call javax.rmi.PortableRemoteObject.narrow to narrow the returned object to
the Bean’s home interface class. narrow requires as parameters the object to be
narrowed and a java.lang.Class reference that specifies the interface type to
returned. To obtain the java.lang.Class reference, use Home.class, where Home
is the Bean’s home interface type. Cast the object returned by the narrow
method to the Bean’s Java home interface.

The lookup method throws javax.naming.NamingException if the Bean home
name cannot be resolved or the home interface proxy cannot be created. This
can happen for any of the following reasons:

• The server address specified with the Context.PROVIDER_URL property is
incorrect or the server is not running.

• Authentication with the specified credentials failed.

• The Bean is incorrectly configured on the server. For example, a skeleton
has not been generated, or the Bean’s properties specify the wrong
implementation class.

Check the server’s log file if the cause of the error is not clear from the
exception’s detail message.

The call below instantiates a proxy for a Bean with Java home interface
test.p1.Stateless1Home and Bean home name of test/p1/Stateless1:

import test.p1.*;
import javax.naming.*;
javax.rmi.PortableRemoteObject;

try {
Object o = ctx.lookup("test/p1/Stateless1");
Stateless1Home home = (Stateless1Home)
PortableRemoteObject.narrow(o, Stateless1Home.class);

} catch (NamingException ne) {
System.out.println("Error: Naming exception: "
+ ne.getExplanation());

}

Instantiating remote interface proxies
Use the home interface create and finder methods to create proxies for session
Beans and entity Beans.

CHAPTER 7 Creating Enterprise JavaBean Clients

105

Instantiating proxies
for a session Bean

A session Bean’s home interface can have several create methods. Each creates
an instance with different initial-value criteria. The fragment below shows a
typical call:

try {
Inventory inv = invHome.create();

} catch (CreateException ce)
{

System.out.println("Create Exception:"
+ ce.getMessage());

}

Instantiating proxies
for an entity Bean

Each instance of an entity Bean represents a row in an underlying database
table. An entity Bean’s home interface may contain both finder methods and
create methods.

Finder methods Finder methods return instances that match an existing row
in the underlying database.

A home interface may contain several finder methods, each of which accepts
parameters that constrain the search for matching database rows. Every entity
Bean home interface has a findByPrimaryKey method that accepts a structure
that represents the primary key for a row to look up.

Finder methods throw javax.ejb.FinderException if no rows match the specified
search criteria.

Create methods Create methods insert a row into the underlying database.

When instantiating an entity Bean proxy, call a finder method first if you are
not sure whether an entity Bean’s data is already in the database. Create
methods throw a javax.ejb.CreateException exception if you attempt to insert a
duplicate database row.

Example: instantiating an Entity Bean This example instantiates an Entity
bean that represents a customer credit account. The primary key class has two
fields: custName is a string and creditType is also a string. The example looks
for a customer named Morry using the findByPrimaryKey method. If
FinderException is thrown, the example calls a create method to create a new
entity for customer Morry:

String _custName = "Morry";
String _creditType = "VISA";

custCreditKey custKey = new custCreditKey();
custKey.custName = _custName;
custKey.creditType = _creditType;
custMaintenance cust;

Calling remote interface methods

106

try {
System.out.println(

"Looking for customer " + _custName);
cust = custHome.findByPrimaryKey(custKey);

} catch (FinderException fe) {
System.out.println(

"Not found. Creating customer " + _custName);
try {

cust = custHome.create(_custName, 2000);
} catch (CreateException ce)

System.out.println(
"Error: could not create customer "
+ _custName);

}
}

Calling remote interface methods
After instantiating a proxy for the Bean, call the remote interface methods to
invoke the Bean’s business logic. You can call the proxy methods as you would
invoke methods on any other object.

Managing transactions
EJB clients can begin transactions using the javax.transaction.UserTransaction
interface. Obtain an instance from the initial naming context by resolving the
name javax.transaction.UserTransaction. For example:

import javax.transaction.*;
import javax.naming.*;

Context ctx;

... ctx has been initialized ...
UserTransaction uTrans =

(UserTransaction) ctx.lookup(
"javax.transaction.UserTransaction");

You can call the begin(), commit(), and rollback() methods to begin and end
transactions. You can enlist multiple component methods in a transaction, with
these restrictions:

CHAPTER 7 Creating Enterprise JavaBean Clients

107

• Each method must allow inheritance of an existing transaction context.
That is, the method’s transaction attribute must be Supports, Requires, or
Mandatory. Methods with other transaction attributes run outside the
scope of your transaction. See “Transactions tab component properties”
on page 77 for more information on transaction attributes.

• All components must be on the same server, and all must use the same
transaction coordinator.

• All methods must be invoked by the thread that began the transaction.

Serializing and deserializing Bean proxies
Serialization allows you to save a Bean proxy as a file. Deserialization allows
you to extract the proxy from the file in another process or on another machine,
and, if the component instance is still active, reestablish your session with the
component.

To serialize a proxy Call the getHandle method on the remote interface, which returns a
javax.ejb.Handle instance. You can serialize the Handle instance using the
standard Java serialization protocol, as shown in the example below:

String _serializeTo; // Name of file to save to
Stateful1 proxy; // Active proxy instance

try {
System.out.println("Serializing to " + _serializeTo);
Handle handle = proxy.getHandle();
FileOutputStream ostream = new
FileOutputStream(_serializeTo);
ObjectOutputStream p = new
ObjectOutputStream(ostream);
p.writeObject(handle);
p.flush();
ostream.close();

} catch (Exception e)
{

System.out.println("Serialization failed. Exception "
+ e.toString());

e.printStackTrace();
return;
}

To deserialize the
proxy

Use the standard Java deserialization protocol to extract the Handle instance,
then call getEJBObject to restore the proxy, as shown in the example below:

Serializing and deserializing Bean proxies

108

String _serializeFrom; // Name of file to read from
Stateful1 proxy;

try {
System.out.println("Deserializing proxy from "

+ _serializeFrom);
FileInputStream istream = new
FileInputStream(_serializeFrom);
ObjectInputStream p = new ObjectInputStream(istream);
Handle handle = (Handle)p.readObject();
proxy = (stateful1) handle.getEJBObject();
istream.close();

} catch (Exception e)
{

System.out.println(
"Deserialization failed. Exception "
+ e.toString());

e.printStackTrace();
return;

}

109

C H A P T E R 8 Managing Persistent Component
State

You can code components to store state information in the database rather
than in memory. Doing so offers failover for stateful components, and
allows you to map relational data to a component interface using the EJB
entity Bean model.

Persistence for entity Java Beans
Entity components present an object view of relational data to clients;
each instance of an entity component maps to a row in a database relation.

Entity components must be EJB entity Beans implemented according to
the EJB 1.1 standard (see Chapter 6, “Working with EJB Packages and
Components”). You can implement entity components by following these
requirements:

• Define a primary key type for the component. See “Allowable
primary key types” on page 89 for more information.

• Create a home interface for the component with a findByPrimaryKey
method and, optionally, additional finder and create methods. See
Patters for finder methods for more information.

For an entity component, you can manage persistence using these
techniques:

Topic Page
Persistence for entity Java Beans 109

Persistence for stateful components 114

Storage components 116

Supported Java, IDL, and JDBC/SQL types 116

Table schema for binary storage 117

Persistence for entity Java Beans

110

• Component managed In this technique, you implement the code
that reads and writes persistent data and maps the relational column
values to fields in the implementation class. This model corresponds
to the Bean Managed Persistence model required by the EJB 1.1
specification.

• Automatic persistence In this technique, EJB Server manages the
storage and retrieval of persistent data.

• Generated class In this technique, a generated Java class saves and
restores component state from a remote database. The Adaptive
Server plug-in does not generate such classes, but third-party tool
vendors can use this option. The generated class can inherit from or
delegate to the component’s implementation class to save and restore
component state.

Using component-managed persistence
To use component-managed persistence, you must configure the
component’s persistence properties and implement the required methods
from the EntityBean interface.

Display the Component Properties window in the Adaptive Server plug-in
and configure the following fields on the Persistence tab:

• Persistence Choose Component Class.

• Primary Key Enter the name of the primary key type (see
“Allowable primary key types” on page 89).

In most cases, no other persistence settings are required. You can delegate
to EJB Server’s built-in storage components rather than implementing
your own database access code. If you do so, configure the Storage
Component, Connection Cache, and Table fields (see “Storage
components” on page 116).

Using automatic persistence
When using automatic persistence, EJB Server manages all interaction
with the database. There are two options for database storage when using
automatic persistence:

CHAPTER 8 Managing Persistent Component State

111

• Using mapped fields In the mapped table model, you define a
mapping from a database table to fields in your component
implementation class. When a write to the database is required, EJB
Server reads the field values; after reading new data from the
database, EJB Server assigns new field values for each mapped
database column. This model corresponds to the Container Managed
Persistence model required by the EJB 1.1 specification.

• Using binary storage In this model, you define state-accessor
methods and an IDL state type. EJB Server calls your state-accessor
methods before writing data to the database and after reading from the
database. The state data is stored in an encoded binary form. Because
the relational data is encoded, this model does not support finder
methods other than findByPrimaryKey.

Identifying the storage technique
The component uses mapped field storage if the value of the Table field on
the Persistence tab begins with map:, for example, map:MyTable.

❖ To configure automatic persistence:

1 Configure Persistence tab properties.

2 Specify field to column mapping properties.

3 Specify finder-method queries.

Configure Persistence tab properties

Display the Component Properties window in the Adaptive Server plug-in
and configure the following fields on the Persistence tab:

• Persistence Choose Automatic Persistent State.

• Primary Key Enter the name of the primary key type (see
“Allowable primary key types” on page 89). If you have imported an
EJB entity Bean, the primary key has been defined already.

• Storage Component Enter or choose the name of the component
that manages interaction with the database. See “Storage
components” on page 116 for more information.

• Connection Cache Enter the name of a JDBC connection cache
that connects to the database. The cache must have by-name access
enabled and be installed on all servers where your component is
installed.

Persistence for entity Java Beans

112

• Table If using mapped table fields, enter:

map:table

Where table is the database table name. If you are using binary
storage, simply enter the table name.

• Time Stamp When you are using mapped table fields, the Time
Stamp setting determines how the server uses optimistic concurrency
control to prevent overlapping updates to the same column. Specify:

• A column name The name of a column in the mapped table
that serves as a timestamp. By default, EJB Server uses a 4-byte
integer timestamp and explicitly increments the value with each
update.

The timestamp column need not be mapped to the component’s
persistent state fields. Other processes that update the mapped table
must increment the timestamp with each update.

Specify field to column mapping properties

If the table’s primary key maps to a single field in the implementation class
(which must be the same type as the component’s primary key), display
the All Properties tab and configure the properties in the following table:

Table 8-1: Mapping database columns to a single field

To map database fields to columns, display the All Properties tab and
define properties to map database columns to fields in the implementation
class, using the name/value patterns listed in the table below:

Table 8-2: Mapping database columns to class fields

Property name Value
mapField:[key]

(For single-column keys only.)

The database column name.

com.sybase.jaguar.

component.key.field

The name of the component field that the key
maps to.

For columns of this
type Property name Value

Key fields (enter one
property for each key
field)

mapField:field[key]

Where field is the name of the
field in the implementation
class that this key column
maps to.

The database
column name.

CHAPTER 8 Managing Persistent Component State

113

You can optionally append a SQL type name to column names, in square
brackets. For example, to specify the column type must be varbinary(1024),
enter:

icon[varbinary(1024)]

The type name is used during automatic table creation. This feature is
useful when a Java type can map to multiple SQL types; in that case, EJB
Server defaults to the type with minimal storage requirements when
creating the table. Varchar columns default to 100 bytes length, and
varbinary columns default to 255 bytes. Specify a type name to override the
default.

Specify finder-method queries

Each finder method in the component’s home interface requires a database
query to select a set of primary keys. For example, the findByPrimaryKey
method selects the key that matches the input parameter. A findAll method
might return all keys in the table.

EJB Server can correctly infer the query required to execute the
findByPrimaryKey method. For other finder methods, you must enter
properties to specify the query. Display the All Properties tab and define
new properties for each finder method. Name each property
mapQuery:method, where method is the finder method name. For the
value, enter a query to select primary key values with a filter appropriate
for the semantics of the finder method. You can use the following
placeholders to represent column and table names and parameter values:

Non-key fields
(enter one property for
each field)

mapField:field

Where field is the name of the
field that this key column
maps to.

The database
column name.

For columns of this
type Property name Value

Placeholder To indicate

[key] The table’s primary key (which can
consist of multiple columns).

[table] The name of the table.

Persistence for stateful components

114

The following are examples of queries using placeholders. This query
returns all rows in a table:

select [key] from [table]

This query uses the value of the expiryDate parameter to filter a range of
closingDate column values:

select [key] from [table] where closingDate <
@expiryDate

Persistence for stateful components
Stateful components collect client session data over successive client
method invocations. Normally, state data is stored in memory using fields
in the implementation class.

You can manage persistence using these techniques:

• Java serialization This model can be used only in EJB stateful
session Beans. To save persistent state, EJB Server serializes the
component class instance and saves the binary data to the database.

• Automatic persistence In this model, you define a state datatype in
IDL or Java and implement component methods to receive state data
read from the database and return state data to be written to the
database. EJB Server calls your state access methods, and manages
interaction with the database.

@param Reference the value of parameter
param in the finder method’s IDL
signature.

Note If the component was imported
from an EJB JAR file, the parameter
names will not match those in the
original Java implementation.
Instead, they are p0, p1, and so forth.

@param.fieldName If method parameter param is not a
simple type, reference the value of
field fieldName.

Placeholder To indicate

CHAPTER 8 Managing Persistent Component State

115

Using Java serialization
To use Java serialization, configure the following fields on the Persistence
Tab in the Component Properties window:

• Persistence Choose Java Serialization.

• Storage Component Enter or choose the name of the component
that manages interaction with the database. See “Storage
components” on page 116 for more information.

• Connection Cache Enter the name of a JDBC connection cache
that connects to the database. The cache must have by-name access
enabled and be installed on all servers where your component is installed.

• Table Enter the name of a database table where the serialized data is
to be stored. EJB Server creates the table if it does not exist.

Using automatic persistence
To use automatic persistence, configure the following properties fields on
the Persistence Tab in the Component Properties window:

• Persistence Choose Automatic Persistent State.

• Storage Component Enter or choose the name of the component
that manages interaction with the remote database. See “Storage
components” on page 116 for more information.

• Connection Cache Enter the name of a JDBC connection cache
that connects to the database. The cache must have by-name access
enabled and be installed on all servers where your component is
installed.

• Table Enter the name of a database table where the serialized data is
to be stored. EJB Server creates the table if it does not exist.

Storage components

116

Storage components
A storage component read and writes component state information from
the database server. If your component uses automatic persistence or Java
serialization, you must specify the storage component used to interact with
the persistent data store. The storage component uses the connection cache
and database table identified on the Persistence tab in the Component
Properties dialog box.

The storage component options are:

• CtsComponents/JdbcStorage Uses a JDBC connection cache to
provide persistent storage of component state. This component has
the Requires transaction attribute. The component’s state is saved in
the context of any existing transaction associated with the component.

• CtsComponents/JdbcStorageReqNew A copy of the
CtsComponents/JDBCStorage component that has the RequiresNew
transaction attribute. The component’s state is saved using a separate
transaction from that used to manage any database work performed by
the component.

Supported Java, IDL, and JDBC/SQL types
Table 8-3 lists the Java, IDL, and JDBC/SQL types that EJB Server
supports for persistent storage using mapped fields. Types on one row are
equivalent. The JDBC/SQL column lists the java.sql.Types constants that
the storage component uses to bind to the database column. When creating
tables, ensure that each column’s type is compatible with the JDBC/SQL
type that corresponds to the mapped Java field.

Table 8-3: Supported Java, IDL, and JDBC datatypes

Java field type CORBA IDL field type
JDBC/SQL column
type

boolean boolean TINYINT

char char CHAR

byte octet TINYINT

short short SMALLINT

int long INTEGER

long long long BIGINT

float float REAL

CHAPTER 8 Managing Persistent Component State

117

Values that can be null
If a field can contain nulls, do not use a primitive type. Instead, use the
CtsComponents::TypeValue IDL type and the equivalent Java object type.
For example, rather than float, use CtsComponents::FloatValue and
java.lang.Float.

Table schema for binary storage
When using the binary storage technique, the table used by the
JdbcStorage and JdbcStorageRegNew components has this schema:

double double FLOAT

java.lang.String CtsComponents::StringValue VARCHAR

byte[] CtsComponents::BinaryValue VARBINARY

java.lang.Boolean CtsComponents::BooleanValue TINYINT

java.lang.Character CtsComponents::CharValue CHAR

java.lang.Byte CtsComponents::OctetValue TINYINT

java.lang.Short CtsComponents::ShortValue SMALLINT

java.lang.Integer CtsComponents::LongValue INTEGER

java.lang.Long CtsComponents::LongLongValue BIGINT

java.lang.Float CtsComponents::FloatValue REAL

java.lang.Double CtsComponents::DoubleValue FLOAT

java.lang.BigDecimal CtsComponents::DecimalValue DECIMAL

java.lang.Date CtsComponents::DateValue DATE

java.lang.Time CtsComponents::TimeValue TIME

java.lang.Timestamp CtsComponents::TimestampValue TIMESTAMP

Serializable object (N/A) VARBINARY

Java field type CORBA IDL field type
JDBC/SQL column
type

Table schema for binary storage

118

Column Data format

ps_key (primary key) The table’s primary key. The column datatype is
different for different component primary key types
(that is, the IDL or Java type specified in the Primary
Key field on the Persistence tab):

• If the component has no primary key, ps_key must
be variable-length binary, 16-byte maximum
length.

• If the component’s key is the IDL string type,
ps_key must be variable length character, 255-
character maximum length.

• If the component uses any other primary key type,
including java.lang.String, ps_key must be
variable length binary, 255-byte maximum length.

This column cannot be null.

ps_size Integer, cannot be null.

ps_bin1 Variable length binary, 255 bytes maximum length,
can be null.

ps_bin2 Variable length binary, 255 bytes maximum length,
can be null.

ps_bin3 Variable length binary, 255 bytes maximum length,
can be null.

ps_bin4 Variable length binary, 255 bytes maximum length,
can be null.

ps_data Binary large object. This type must be functionally
equivalent to a Sybase image type. The JDBC driver
used by the specified connection cache must allow
access to the ps_data column using the JDBC
setBytes and getBytes methods.

119

C H A P T E R 9 Developing Applications with
PowerJ and EJB Server

This chapter gives an overview of how to develop distributed, Web, and
client/server applications with PowerJ and EJB Server. You’ll find
information about the objects and code that make up the pieces of an
application and the ways PowerJ and EJB Server together can provide
business solutions.

About the development process
What you can build This chapter describes scenarios for developing the following kinds of

applications:

• Distributed or Web applications using EJB Server in the middle tier

• Client/server applications

Applets, applications, components, and Web server extensions
There are several types of Java programs: applets, applications,
components, and Web server extensions. PowerJ generates behind-the-
scenes code for each of these types so that you don’t have to write as much
code for the mechanics of the program. You can concentrate on program-
specific code.

Applets An applet is a Java program that requires a host program, such
as a browser, to run. An applet is usually part of an HTML page and is
downloaded when it is needed. You don’t have to deploy applets to
individual computers. Because they are downloaded as needed, applets
should be small so users don’t get impatient waiting for the applet to start.

Topic Page
About the development process 119

Building distributed and Web applications that use EJB Server 128

Building client/server applications using JDBC 137

Building Enterprise JavaBeans 1.1 components 141

About the development process

120

Because applets are downloaded, they are subject to restrictions so they can’t
harm the user’s system. For example, applets cannot access the local file
system and can make connections only back to the server they came from.

Your applet class will extend the standard class java.applet.Applet, which
provides default implementations for the init, start, stop, and paint methods. In
your applet source file, PowerJ generates code to override the init method.

Applications A Java application behaves like any other program. In Java
terminology, an application is a Java program that does not require a host server
or browser to run. The user sees windows and menus and interacts with
controls. The application can connect with a middle-tier or database server.

Since applications must be locally installed rather than downloaded each time
they are run, they can be larger than applets. The user’s class path environment
variable must include the directories containing the application’s code files.

A standalone application has a main method that runs when the application
starts. It includes a main form and can include other forms, including dialog
boxes and frames with menus.

Components Components are standardized, reusable pieces of software that
are hosted in another program. You can install them in servers that are designed
to host components like EJB Server, or include them in Java applications.

Business-logic components consist of methods that implement business rules
and other application logic. These components can be included in a client
application, but are more typically hosted in a component server like EJB
Server in a distributed application.

User-interface components are used in client applications to enhance the user
interface. Typically, user-interface components extend standard user interface
classes. For example, a custom list box component might provide custom
sorting methods, or a text box or check box might have data awareness.

In PowerJ, you can add components to the component palette and include them
in your applications. You can put components on your forms, customize them,
and use their methods through the Reference Card and drag-and-drop
programming. For business-logic components on an EJB Server, when you add
a component to PowerJ, a proxy for it is added to the palette. You can then use
distributed components just as you would local components.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

121

In PowerJ, it is easy to create JavaBeans components. A Bean might be an
encapsulated user-interface component, such as an enhanced button with
custom functionality, or it might be a business-logic component that includes
methods and events. You can use the class, method, property, and event
wizards to create the Java classes for the component. You can also write code
that allows the JavaBeans user to modify properties at design time. There are
specific standards and conventions for creating Beans.

Web server extensions You can create Web server extensions that follow
the Java Servlet API. You can deploy servlets in EJB Server or other Web
servers that support Java Servlets. For Web servers that do not directly support
the Servlet API, PowerJ provides a DLL that translates from CGI, NSAPI, or
ISAPI to the Servlet API.

How you build it You use PowerJ to build most of the pieces of the applications described here.
Some of the activities for building a Java application are listed below.
Depending on which application architecture you choose, some of these
activities may apply to creating the client and others to creating the server.

1 Create a workspace, then create a target, which is the type of program you
want to build. A workspace can include several targets, where each target
is a part of a larger application.

2 Create the user interface by creating one or more forms and adding
controls and nonvisual components.

3 Optionally, add menus by creating a frame (a type of form), adding a
MenuBar object to the frame, and using the Menu editor to design menus.

4 Optionally, access database data by adding transaction and query objects
to the form. Make the visual components of the form bound to the query
object.

5 Code application-processing logic. You can place this code in different
locations:

• In events and methods for a form, control, or menu

• In events and methods for nonvisual components on a form (PowerJ
calls these framework classes—they are visible at design time as
icons)

• In classes that you add to your application

The PowerJ Reference Card and drag-and-drop programming make it easy
to look up classes, properties, and methods and insert appropriate code in
your program.

About the development process

122

Creating workspaces, targets, and classes
What you do First, create a workspace. A workspace contains targets, and targets contain

forms and other classes.

Targets A target is an application, applet, class, or collection that you create with
PowerJ. Types of targets include:

• Applet

• Standalone Java application

• A set of Java class files

• Servlet

• Enterprise JavaBeans component

• JavaBeans component

• WebApplication

• ZIP, JAR, and CAB archive files

You can run a target program anytime during a PowerJ session. PowerJ builds
the target by compiling PowerJ files into Java class files and displaying the
program’s user interface. Depending on the target type and your current run
options, your application may be displayed in the applet viewer, in a Web
browser, or as a standalone program.

Not all targets can be run. For example, you cannot run a set of Java class files
that make up a class library, because it is not a complete application.

A WebApplication target can be used to tie other targets and files together into
a single manageable package. It lets you organize, maintain, and publish all the
files of an application for an intranet or the Internet.

Similarly, archive file targets (ZIP, JAR, and CAB) can be used to collect other
targets and files into a single archive file.

Each target has its own folder; this avoids naming conflicts when source files
have the same name.

Workspaces All work in PowerJ is done within a workspace, which is a collection of one
or more targets. Your workspace can include all the targets involved in the
complete application.

PowerJ creates a workspace definition file for a workspace. The file is a
summary of the workspace and lists all the targets that belong to the workspace.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

123

The Workspace view displays the targets in the current workspace. A target’s
Build Options property sheet lets you specify options for building the target.

Classes Each Java file in the target is a Java class. You can expand the targets in the left
pane of the Workspace view to show classes as well as the properties, methods,
and data members of individual classes. A pop-up menu lets you add new
properties, methods, and events. In the right pane, you can further define your
classes and attributes, and view and edit Java code.

About the development process

124

Writing code From the Workspace view, you can use the code page or open the code editor
for a class or an individual method or event. In the editor options, you can
choose to view all the code for the class or one method at a time. You can hide
or view the code that PowerJ generates.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

125

Designing the user interface
You create the user interface in a PowerJ form. A form is an application
window on which you place buttons, text boxes, and other elements of the user
interface.

Any program with a graphical user interface has a main form, which is the first
window displayed by the application. When you create an applet or application
target, a main form is created for you.

Your application may require additional forms, which you can add by selecting
File | New from the menu bar or clicking the corresponding toolbar button.

Construct the user interface by selecting components on the component palette
and dropping them onto the form. In the code editor for the class, you write
code for component events.

About the development process

126

Designing menus
You add menus to your application with a MenuBar object. A MenuBar object
represents all the menus displayed by the form. MenuBar objects can be added
only to forms that are based on the Frame class.

To add a menu to your application, you create a form whose type is Frame and
drop a MenuBar object onto the form. You can add individual menus and menu
items in the Menu Editor, accessed by selecting Edit Menu from the form’s
pop-up menu.

Accessing data
In PowerJ, you can use the transaction object to simplify connecting to many
types of data sources. You can use either the DataWindow, Java Edition (also
known as the DataWindow JavaBeans component) or the query object for
SQL statements and data retrieval. You use the query object if you want to use
data-bound controls instead of the DataWindow. Both the DataWindow
JavaBeans component and the query object can use the transaction object, or
they can process result sets without a database connection.

The Database component palette includes icons for adding transaction and
query objects to a form. You create instances of the Transaction and Query
classes by selecting them in the palette and dropping their icons onto a form.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

127

To display retrieved data, you can use either data-bound controls with the query
object, or the DataWindow JavaBeans component. On the Standard component
palette, many of the visual controls (such as check boxes, text boxes, and
labels) can be connected to a data source and column so that they display the
data in the current row of a query object’s result set. You make the connection
to the query on the Database page of the control’s property sheet.

Coding application logic
What you do You can add your application logic in event handlers, methods, or external

classes. In choosing where to add this code, keep in mind that effective
encapsulation will make your classes more reliable and reusable. Don’t try to
accomplish everything in a single method.

Events At design time, PowerJ makes it easy for you to write code that gets executed
when events are triggered. PowerJ takes care of the infrastructure for events,
such as event sources and listeners. You just write event-handler code that you
want to be run when the event occurs.

If you want to set up a new event handler in your code, then your code must set
up the event infrastructure.

Methods When you add a new method, PowerJ inserts the method declaration and opens
the code window so you can write the method’s code.

When writing code, you can use the PowerJ Reference Card to look up
methods and properties of classes and components and then insert the method
calls into your code.

Classes In Java, a class provides the definition of an object; an object is an instantiation
of a class. An application with a user interface includes forms, which are
classes with specific support for the design environment. You can also have
classes that are not forms. For these classes, you work in the Workspace view
and code editor. You add methods to the class to contain the application logic.

You can add a class to a target and use the Workspace view to add properties,
methods, and events to the class. This is called a managed class because
PowerJ has records of the functions it contains.

You can also add a Java source file to a target. You can edit the source in the
code editor, but the Workspace view does not display the methods and
properties of the class. The extension for a source file is .java.

Building distributed and Web applications that use EJB Server

128

PowerJ uses an enhanced file format for saving forms and managed classes.
Files for forms have the extension .wxf; files for managed classes have the
extension .wxc. When you build your application, PowerJ generates Java
source files (with the extension .java) that are then compiled into binary files
(with the extension .class). The binary files contain bytecodes that can be
interpreted by a Java VM. These files are usually called class files.

Building distributed and Web applications that use
EJB Server

This section describes how to use PowerJ and EJB Server together to create
distributed and Web applications.

About EJB Server
What it is EJB Server is a component transaction server that hosts Java components.

Using PowerJ, you can develop EJB Server Java components and Java client
programs that connect to EJB Server and execute component methods.

When a client invokes a method on an EJB Server component, EJB Server
intercepts the call, locates an instance of that component that can carry out the
request, passes the parameters and invokes the method, then returns the result
to the client.

EJB Server
components

An EJB Server component is a reusable module of code that combines related
tasks into a well-defined interface. EJB Server components are installed on an
EJB Server and contain methods that execute business logic and access data
sources. Components are nonvisual—they do not display graphics or user
interfaces. You can import an EJB Server component into PowerJ and use the
Reference Card to browse its methods and properties.

Data access To optimize database processing, EJB Server provides support for connection
caching. Connection caching allows EJB Server components to share pools of
preallocated connections to the database server, avoiding the overhead
imposed when each instance of a component creates a separate connection. By
establishing a connection cache, an EJB Server can reuse connections made to
the same data source.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

129

Architecture of distributed and Web applications
How it works In a distributed or Web application that uses Java and EJB Server together, a

Java client accesses the EJB Server, which in turn accesses a database.

About the distributed
architecture

In the distributed architecture, the client is a Java application rather than an
applet. The application and Java VM need to be installed on the user’s machine
and the application files made accessible to the Java VM.

About the Web
architecture

A Web application is a variation on the distributed architecture where the client
is a Java applet hosted in a Web browser.

About the Web client The browser handles communication with a Web
server via the HTTP protocol. The Web page that contains the applet and the
applet itself are downloaded via HTTP. The applet then runs in the Web
browser but bypasses the Web connection and communicates directly with the
EJB Server. Connecting directly to EJB Server enables persistent connections
with the client and avoids the problems with stateless HTTP.

A major advantage of the Web architecture is that the client applet is
downloaded when the Web page is requested. You don’t have to worry about
deployment to individual users.

The main disadvantage of the Web architecture is that an applet must be
downloaded each time it is run, and unless it is marked as trusted, cannot
provide full application services, such as accessing other files, running other
programs, or making native calls.

EJB Server as Web server EJB Server can fill the role of Web server using
the HTTP protocol, as well as provide support for IIOP connections that invoke
the services of the EJB Server transaction server.

Creating a distributed
or Web application

The general procedure for using PowerJ to create a distributed or Web Java
application that uses EJB Server is:

1 Decide what functionality will be encapsulated in an EJB Server
component. Typically, the component implements business logic that
analyzes data, performs computations, or retrieves and processes data
from the database.

2 In PowerJ, write the code for the component. In addition to implementing
the component’s business logic, you may also call EJB Server methods to
take advantage of transactions and other EJB Server performance features
(information about these features follows).

3 In PowerJ or the Adaptive Server plug-in to Sybase Central, define
connection caches to manage pools of connections to the remote databases
that your component connects to.

Building distributed and Web applications that use EJB Server

130

4 In PowerJ, set the deployment options for your component, including
transaction management, instance pooling, and timeout settings.

5 In PowerJ, deploy the component to EJB Server. This automatically
creates CORBA skeletons for your component, and optionally adds a
proxy to the PowerJ component palette.

6 In PowerJ, create the client, which can be a Java application or applet. Add
the proxy object and PowerJ InitialContext object to your client, and you
can access your component’s methods as easily as if the component were
available locally. The InitialContext object takes care of connecting to
your EJB Server component and initializing the proxy.

Information about building client applications and applets is in “Building
a Java client for a distributed or Web application” on page 136.

Building EJB Server components with PowerJ
A Java component for EJB Server can be an interface, a class, or a JavaBeans
component. You can implement any of these in PowerJ.

An EJB Server Java component follows the Enterprise JavaBeans
implementation model. Enterprise JavaBeans (EJB) components are portable
to any server that follows Sun’s EJB 1.1 specification. An EJB session Bean
models the interaction between an end user and the EJB Server. For example,
in an online purchasing application, a session Bean might keep track of a user’s
uncommitted purchases. An EJB entity Bean represents a row of data stored
in a database. For example, an entity Bean might represent a customer’s
purchase order. From the client’s view, entity Beans persist as long as the
associated database row has not been deleted. EJB components use standard
javax.ejb APIs for component lifecycle and transaction control.

The Enterprise JavaBeans model allow you to use the EJB Server connection
caching, transaction management, and lifecycle control features.

There are some restrictions to keep in mind for components. They include:

• Parameters for methods in an EJB Server component must have datatypes
that can be defined with CORBA IDL.

• Classes and JavaBeans components must have a default constructor (a
constructor with zero parameters). When you deploy the component to the
EJB Server , PowerJ warns you about classes and methods that don’t
conform.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

131

Implementing the component
General procedure Creating and deploying an EJB Server component involves these main tasks:

1 Define and implement the EJB component in PowerJ.

Create an EJB 1.1 target that defines the type of Bean, the Java package
and class names, and the component’s transactional attribute. PowerJ
generates skeleton implementations for the SessionBean or EntityBean’s
home interface, remote interface, and implementation class. Provide
signatures for business methods in the remote interface and for any
required methods in the home interface, and add code to implement these
methods in the implementation class.

2 Set the deployment options for your component, including the EJB Server
package name and EJB Server component name.

3 Deploy to EJB Server so you can test the component. This is an iterative
process (deploy, test, debug, and redeploy). PowerJ supports in-process
debugging of EJB Server components.

For more information about debugging Java components running in EJB
Server, see the PowerJ documentation.

EJB Server services When designing the component, you can take advantage of these EJB Server
services to enhance your application’s performance:

• Transaction management

• Database access and result set management

• Connection caching

• Instance pooling

These EJB Server features enable you to write high-performance applications
with effective error management. You need to set deployment options in
PowerJ to enable some of these features in your component, and your
component needs to call methods that allow it to cooperate with other
components.

Building distributed and Web applications that use EJB Server

132

Transaction management

How it works

When a component is transactional and uses the EJB Server connection
management feature, commands sent to a data source are automatically
performed as part of a transaction. Component methods can call EJB Server’s
transaction state primitives to influence whether EJB Server commits or aborts
the current transaction.

The EJB Server coordinates the database activity of all transactional
components participating in the transaction. The application can roll back
everything that took place in the transaction if any component could not
complete its part of the work.

❖ To define how a component participates in transactions:

1 Choose a transaction coordinator for the EJB Server. The transaction
coordinator manages the flow of transactions that involve more than one
connection and sometimes more than one data source.

2 Set the component's transaction attribute to determine how the
component participates in transactions.

3 Code methods to call EJB Server’s transaction state primitives to
influence the transaction outcome.

Each task is described in detail below.

Choosing a transaction coordinator

The transaction coordinator manages the flow of transactions that involve more
than one connection and sometimes more than one data source. To enable
transactions involving multiple data sources, you must configure your EJB
Server to use a transaction coordinator that supports two-phase commit, such
as OTS/XA.

Setting the transaction attribute

Each EJB Server component has a transaction attribute that determines how
instances of the component participate in transactions. Values are:

Attribute Description

Requires
Transaction

The component always executes in a transaction. Use this option
when your component’s database activity needs to be coordinated
with other components, so that all components participate in the
same transaction.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

133

Influencing transaction outcome

If your component participates in EJB Server transactions, you can call
transaction state primitives to explicitly commit or roll back database updates
performed in a method.

Components that use the Bean Managed or OTS Style transaction attribute
must explicitly begin and end transactions using the APIs described below. For
components that use any other attribute, EJB Server implicitly commits each
method’s work when the method returns unless the method has requested
rollback.

Different component types use different transaction APIs:

Requires New
Transaction

Whenever the component is instantiated, a new transaction begins.

Supports
Transaction

The component can execute in the context of an EJB Server
transaction, but a transaction is not required to execute the
component’s methods. If a method is called by a base client that has
a pending transaction, the method’s database work occurs in the
scope of the client’s transaction. Otherwise, the component’s
database work is done outside of any transaction.

Not Supported The component's methods never execute as part of a transaction. If
the component is activated by a client that has a pending
transaction, the component’s work is performed outside the existing
transaction.

Mandatory Component methods must be called in the context of a pending
transaction. If a client calls a method without an open transaction,
the EJB Server ORB throws an exception.

Bean
Managed

For EJB session Beans only. The component can explicitly begin,
commit, and rollback new, independent transactions by using the
javax.transaction.UserTransaction interface. Transactions begun by
the component execute independently of the client’s transaction. If
the component has not begun a transaction, the component’s
database work is performed independently of any EJB Server
transaction.

Attribute Description

Building distributed and Web applications that use EJB Server

134

• EJB components using attribute Bean Managed Only EJB session
Beans can use the Bean Managed transaction attribute. Components using
this attribute must call the methods in the interface
javax.transaction.UserTransaction to begin, commit, and roll back
transactions. If the component is not a stateful session Bean, then
transactions begun in a method call must be committed or rolled back
before the method returns. Otherwise, EJB Server logs a runtime error and
returns an exception to the client.

• EJB components using any other attribute When an EJB component
does not use the Bean Managed transaction attribute, EJB Server
implicitly commits the component’s work after each method returns. To
override the default outcome, call the EJBContext.setRollBackOnly
method.

Database access and result set management
How it works Java components send result sets to the client using the interfaces in the

com.sybase.jaguar.sql package:

• Methods in the JServerResultSetMetaData interface define the format of
rows in a result set.

• Methods in the JServerResultSet interface define column values for rows
in a result set and send the rows to the client.

You don’t have to implement these interfaces. The jaguar.server.JContext class
contains static methods for obtaining objects that implement these interfaces.

Sending a ResultSet
object to the client

To send database data to the client:

• Get the data by sending a query to the remote server. Use
java.sql.Statement or one of its extensions. The appropriate method
depends on the query you are making.

• Convert the results of the query to TabularResults.ResultSet.

Sending results row
by row

You can also send the result set row by row by building another ResultSet
object that contains a subset of the original query. Methods in the metadata and
resultset interfaces let you specify the columns and data in the result set.

Connection caching
How it works A connection cache contains a pool of preallocated connections that

components can use repeatedly as needed to communicate with a database
server using a common user name and password. Connection caching provides:

CHAPTER 9 Developing Applications with PowerJ and EJB Server

135

• Improved performance through reuse of connections The EJB
Server connection manager allows client sessions to share previously
opened connections so that server CPU time and memory are not
consumed by opening more connections than necessary.

• Improved scalability Since connection caching allows the same number
of clients to be serviced using fewer connections, less memory and other
resources are required.

• Support for transaction semantics EJB Server’s declarative
transaction model requires that you call the connection caching APIs to
obtain and release all database connections

To realize these benefits, a component must be coded to use a cached
connection only when necessary and to release the connection back to the
cache at other times. A component should not hold connections while waiting
for more input from the client application. As a general rule, each method call
that requires a third-tier connection should take a connection handle when
invoked and release it before returning.

JDBC 2.0 drivers provide implicit support for connection pooling. When using
JDBC drivers that do not conform to the JDBC 2. 0 specification, you can
define a connection cache in the Adaptive Server plug-in or PowerJ for your
components’ use.

Transaction support requires cached connections
If your component participates in EJB Server transactions, you must use an
JDBC 2.0 driver or define an EJB Server connection cache and obtain
connections using the EJB Server connection manager classes.

Java Connection
Manager classes

Java components can use the Java Connection Manager (JCM) classes for
connection caching. The JCM classes manage JDBC connections.

The JCM classes are:

• com.sybase.jaguar.jcm.JCMCache Represents a configured
connection cache and provides methods to manage connections in the
cache.

• com.sybase.jaguar.jcm.JCM Provides access to JDBC connection
caches defined in the Adaptive Server plug-in. JCM methods return
JCMCache instances.

To access a connection cache, configure a PowerJ transaction object to connect
to the cache, and use the transaction object. Typically, you will also use a query
or DataStore object.

Building distributed and Web applications that use EJB Server

136

Instance pooling
How it works Instance pooling allows EJB Server to maintain a cache of component

instances and bind them to client sessions on an as-needed basis. When
components support instance pooling, the scalability of your application
increases. Instance pooling eliminates execution time and memory
consumption that would otherwise be spent allocating unnecessary component
instances.

Implicit pooling of EJB
components

Entity Beans and stateless session Beans can be implicitly pooled after any
method invocation. EJB Server calls the activate and passivate methods to
indicate when an instance has been bound to a client session.

Stateful session Beans remain bound to a client session as long the server has
not crashed, the client has not called remove to unbind from the instance, or the
Beans session timeout value has not expired. EJB Server may serialize the
instance and save it to disk to conserve memory. EJB Server calls the passivate
method before serializing the Bean, and the activate method when the Bean has
been deserialized. In the code for these methods, you must release and
reacquire any object references that do not support serialization.

Building a Java client for a distributed or Web application
Types of clients The Java client in a EJB Server distributed application can be an applet or an

application, depending on whether you want your client to run in a Web
browser.

Enterprise JavaBeans
model for clients

EJB Server supports the EJB 1.1 client model using stubs that call the EJB
Server CORBA ORB.

General procedure Creating a Java client for EJB Server involves these general steps:

1 In PowerJ, add the EJB Server component. This creates a proxy on the
PowerJ component palette.

2 Add a proxy object and PowerJ InitialContext object to your client.

3 Write code that:

• Calls component methods by calling the corresponding method in the
stub class.

• Cleans up client-side resources by setting proxy references to null.
This expedites Java garbage collection.

4 Execute the Build command to compile your Java client and then deploy it.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

137

Compiling and deploying the Java client
What you do In PowerJ, you compile your Java classes with the Build command. Testing the

distributed or Web application requires access to the EJB Server, on either your
own machine or another machine accessible to you.

Setting up and
publishing a client
applet

When PowerJ builds an applet, it generates an HTML file with an APPLET tag
that you can use for testing. You can copy the APPLET tag from the generated
file into the HTML file you are developing for your applet.

PowerJ provides a WebApplication target type that you can use to collect all
the files that you want to deploy.

Deploying a client
application

After you build the client application, you can test it within PowerJ. You can
run in Debug or Release (nondebug) mode.

When you are ready to deploy the application to a user’s machine, you can
check the CLASSPATH directories that PowerJ is using so that you can set the
CLASSPATH correctly for the users.

Building client/server applications using JDBC
How it works Client/server architecture means an application that connects directly to a

database. Business logic and the user interface are implemented together on the
client. Your application may also have business logic as stored procedures in
the database.

In Java applications, the database connection is made using JDBC.

Building client/server applications using JDBC

138

The Java client application uses a transaction object to make a database
connection. A query object or DataWindow object makes the SQL query and
manages the result set. To present the data in the user interface, you can use the
DataWindow JavaBeans component or a data-bound control.

The PowerJ Database wizard makes it easy to create database forms and
generates much of the required code for instantiating the transaction and query
objects and managing the data binding.

About JDBC JDBC is a standard that describes how to connect to and talk to a database from
within a Java application or applet. JDBC is a set of Java interfaces, not actual
Java classes. The JDBC interface (also called the JDBC API) provides Java
programmers with a uniform interface to a wide range of relational databases.

To use JDBC, you need a JDBC driver that implements the methods specified
in the interface.EJB Server provides the Sybase high-speed, shared-memory
driver for this purpose.

Building the application
What you do PowerJ makes it easy to create a database form. Typically, you use the Form

wizard to create the form. The wizard gathers your specification and sets up the
transaction object, query object, and bound controls that will display the
retrieved data. PowerJ takes care of most of the code for instantiating the
objects, making the database connection, executing the query, and populating
the controls.

Transaction object In a PowerJ program, the transaction object handles the database connection.
Its properties store information about the database you want to connect to, and
it manages SQL transactions via commits and rollbacks.

CHAPTER 9 Developing Applications with PowerJ and EJB Server

139

The transaction object is in the Database page of the component palette. To add
a transaction object to your form, you select the transaction icon in the palette
and click on the form. If you used the database option in the Form wizard, the
transaction object is added automatically.

Transaction properties The transaction object has properties for connection
and transaction management. You can set them in the wizard or on the object’s
property sheet. You need to specify the JDBC driver and the URL for the
database, among other properties. You can also specify that you want to
connect to the database automatically when the form is created, whether each
database operation gets committed automatically when it is completed, and
whether updates are allowed.

You can also set properties at runtime. It is typical to let the user specify a user
ID and password and set the UserId and Password properties in code. The
following code sets these properties with values saved in string variables:

transaction_1.setUserID(userid);
transaction_1.setPassword(password);

Connecting If you have not set up AutoConnect behavior, you can connect
to the database using the connect method of the transaction object:

transaction_1.connect();

Transaction management If you have not set up AutoCommit behavior, you
can commit or roll back changes explicitly with methods of the transaction
object:

transaction_1.commit();
transaction_1.rollback();

Query object A query object represents a query on a specific database and can be used to
execute any SQL statement. After the transaction object connects to the
database, interactions with the database are done through query objects.

How the query object manages data A query object has several data
buffers. The buffers store the data as it was retrieved from the database, the
current state of the data, rows that have been deleted, and rows that are
temporarily filtered out of view.

To update the database, PowerJ generates SQL statements to modify the
contents of the database so that they match the contents of the primary buffer.

Query object properties The query object has properties that associate it
with a transaction object, describe the SQL statement for the query, and
provide information necessary for updating the database, such as primary key
columns. You can set the properties in the query object property sheet at design
time or you can use query object methods at runtime.

Building client/server applications using JDBC

140

For the SQL statement, you can type the text in the property sheet or use the
PowerJ Query Editor to construct the query. If you want to change the SQL
statement at runtime, you can use the setSQL method:

String userStatement = "select * from dba.employee";
query_1.setSQL(userStatement);

Executing the query If you set the query’s AutoOpen property, your
program will automatically execute the query when the query object is created.
To execute the query at runtime, you call the open method:

query_1.open();

If the query’s SQL statement returns a result set, you can call methods that
work with the data, often using bound controls.

Setting up data-bound
controls

A data-bound control is an object whose value is automatically updated by
query results. When you use bound controls, you can display database data
with very little coding effort. For example, you can bind a text box to a query
object so that the text box always shows the value of a specified column in the
current row. If you move the cursor to a different row of data, the text box
automatically changes to show the value in the same column of the new row.

If the user changes the value of a bound control, it typically changes the
corresponding value in the query object’s primary buffer. For example, if a text
box displays the value of Column 1, changing the value of the text box
typically changes the value of Column 1 in the current row (as stored in the
primary buffer). Changes made in the primary buffer can be incorporated in the
database itself using the update method.

A bound control, such as a text box or check box, displays values from a single
database column. Controls such as grids can display values from several
columns.

To use an object as a bound control, you check the Bound Control check box
on the object’s property sheet at design time. You can’t convert an ordinary
control to a bound control at runtime.

Data for bound controls To associate data with the bound control, you set
the control’s DataSource and DataColumns properties. You can set them on the
property sheet at design time or with the set methods at runtime.

The DataSource property specifies the query object to which the control will
be bound. To set its value at runtime, use the control’s setDataSource method:

textf_1.setDataSource(query_1);

CHAPTER 9 Developing Applications with PowerJ and EJB Server

141

The DataColumns property determines which column’s value is displayed by
the bound control. To set its value at runtime, use the setDataColumns method.
The string identifying the column can be the column’s name or number:

textf_1.setDataColumns("emp_id");

To specify multiple columns for controls such as grids, you can list more than
one column, with entries separated by semicolons:

grid_1.setDataColumns("emp_id;dept_id");

Data navigator PowerJ’s data navigator control provides a simple way for
the user to move through a database. It displays forward and back buttons and
buttons for adding, editing, and deleting rows.

Data navigators are bound controls, just like the controls that display data.
They control the position of the cursor in the result set by calling methods of
the query object, such as moveFirst or movePrevious.

Building Enterprise JavaBeans 1.1 components
PowerJ 3.6 supports Version 1.1 of the Enterprise JavaBeans specification.

See Sun EJB component specs
See the EJB 1.1 specification from Sun Microsystems at
http://java.sun.com/products/ejb/.

Using Power J, you can automatically deploy EJB 1.1 components to EJB
Server. But EJB 1.1 components created in PowerJ can also be imported into
other application servers by using that application server's importing
methodology.

If you are currently using an application server that does not support EJB 1.1
component technology, either upgrade your current application server to a
version in which EJB 1.1 is supported or use EJB Server.

Creating an EJB 1.1 component is done in nearly the same way as described in
the PowerJ 3.5 documentation. You use the EJB 1.1 Component wizard to
specify the EJB component and the wizard creates an EJB 1.1 target and,
optionally, an associated JAR file. The EJB 1.1 target contains the EJB
component’s implementation class, the Home interface, and the Remote
interface.

Building Enterprise JavaBeans 1.1 components

142

P A R T 3 Information for
Administrators

This part describes how to set up and manage the EJB
Server.

145

C H A P T E R 1 0 Configuring EJB Server

This chapter describes basic configuration tasks that you can perform to
customize your installation, such as replacing an EJB Server, changing
server properties, and defining new connection caches.

The EJB Server runtime environment is preconfigured. With minimum
setup, you can have a fully functioning EJB Server. Although the default
settings are usually sufficient, EJB Server provides you with the flexibility
to customize your server environment when necessary.

You can perform all configuration tasks using the Adaptive Server plug-
in. For instructions for starting Sybase Central and the Adaptive Server
plug-in and for starting and enabling EJB Server, refer to task descriptions
in Chapter 2, “Getting Started”.

Configuring an EJB Server
To configure or modify the properties of an individual EJB Server:

1 From within the Adaptive Server plug-in, display the EJB Server you
want to configure by double-clicking the host Adaptive Server icon
and then double-clicking the Enterprise JavaBeans folder.

2 Highlight the EJB Server.

Topic Page
Configuring an EJB Server 145

Configuring server stack size 151

Character sets 152

Shared-memory connections 152

Managing connection caches 153

Managing XA resources 159

Configuring listeners 163

Replacing an EJB Server 165

Configuring an EJB Server

146

3 Select File | Properties. You see the Server Properties window, which
contains these tabs:

• General – define general individual server properties.

• Naming Service – set the EJB Server naming service options.

• All Properties – edit server property settings in their raw format, that
is, as they are stored in the configuration repository.

Saving property changes and refreshing the server:
If you modify any property, click OK in the Server Properties window to save
your changes, or click Cancel to disregard the changes.

When you modify server properties you must refresh the server for the changes
to take effect. To refresh the server, select View | Refresh All.

General
Table 10-1describes the general properties that you can configure for
individual servers.

Chapter 10 Configuring EJB Server

147

Table 10-1: Server general properties

Log/Trace
Tracing provides information about activities carried out by your application.
Trace output is sent to the EJB Server log file. To establish the level of detail
for logging and tracing, select the Log/Trace tab. Table 10-2 describes the
logging and trace properties.

 Property Description Comments

Charset Specify the character set used by the
server. Make sure that the character set
in the EJB Server is the same as that
used in Adaptive Server.

By default, the server
uses iso_1.

Description Enter a description of the server, up to
255 characters in length.

Classpath Displays the contents of the server’s
CLASSPATH environment variable.
This setting specifies the directories
from which Java class files can be
loaded. It is defined by the start-up
script when you start the server.

The field is read-only
and helpful for
debugging various
errors.

Configuring an EJB Server

148

Table 10-2: Debug/Trace properties

Naming Service
Select the Naming Service tab on the Server Properties window to set the EJB
Server’s naming service options. You can use this property sheet to configure
an EJB Server to be a name server.

Initial Context

Enter the EJB Server default name context. The name server binds any object
implementations on the server to the server’s initial name context.

If you use a EJB Server as a name server, the name context can be a compound
name with each organization level separated with a forward slash (“/”); for
example, /us/sybase/finance.

Naming Server

Use these options to specify whether the EJB Server is also a name server and
whether to enable heartbeat detection.

 Property Description

Log File Name The name of the EJB Server log file. This file defaults to
srv.log in the Adaptive Server startup directory. srv.log
logs a wide range of information and is helpful in isolating
problems.

You can create the log file in an alternate directory by
prefixing a full path to the file name you enter.

Log File Size (Bytes) The size, in bytes, to which the log file grows before it is
truncated.

Truncate Log on
Startup

When this flag is set, the log truncates every time the server
is restarted. Keep in mind that if the server crashes and this
flag is set, you will lose the log file and the information it
contains.

Trace Attentions If set, traces attentions received or acknowledged by EJB
Server.

Trace Network Driver
APIs

If set, traces Net-Lib driver requests.

Trace Network Driver
Requests

If set, traces network layer protocol requests.

Chapter 10 Configuring EJB Server

149

If a server is not accepting connections, the name server does not return a
profile (host:port) information to the client. The name server also detects when
a failed server is ready to accept connections again and starts routing client
requests to that server.

• Click Enable as a Name Server to configure the EJB Server as a name
server. If you select this option, you can then set the other Naming Service
options described below.

Naming Server Strategy

If you enabled the EJB Server as a name server, indicate whether the server
provides transient or persistent object name storage. By itself, an EJB Server
name server provides transient storage. However, you can add persistent
storage capabilities to EJB Server by using an external naming service, such as
an LDAP name server.

If you enable persistent storage, enter the following information:

• The URL of the LDAP name server

• A manager DN (distinguished name) for the LDAP server

• The manager DN password

The manager DN provides exclusive access to all objects in the LDAP server
database to bind and update the objects on the name server. The manager DN
and its password are part of the LDAP server configuration properties set by
the server administrator. Refer to your LDAP server documentation for
complete information.

All Properties
For advanced users only. Select this tab to edit server property settings in the
EJB Server configuration repository. You can use this tab to edit any property
prefixed with “com.sybase.jaguar.server.”

Most server properties can be configured on other tabs in the Server Properties
dialog box, except the following:

• com.sybase.jaguar.server.authservice The name of a custom
component that authenticates IIOP user connections. The default is
AseAuth/DbAuth.

Configuring an EJB Server

150

• com.sybase.jaguar.server.authorization.service The name of a
custom component that authorizes user access to components and HTTP
URLs.

• com.sybase.jaguar.server.authorization.permcachetimeout The
length of time, in seconds, that the server can cache authorization data for
a user’s access to a resource. The default is 7200 seconds, which is
equivalent to 2 hours.

• com.sybase.jaguar.server.jvm.debugging Whether in-process Java
debugging is enabled for servlets and Java components. Set to true to
enable debugging (you must also start the debug version of the EJB
Server).

• com.sybase.jaguar.server.jvm.nojit Specifies whether the Java Virtual
Machine just-in-time (JIT) compilation feature is disabled. Set the value
to true (the default) to disable the JIT feature.

• com.sybase.jaguar.server.jvm.options Specifies initialization options
for the Java Virtual Machine. You can specify any option that is valid for
the java command line. Separate options with commas, for example:

-Dmy.system.property.1=foo,-Dmy.system.property.2=bar

• com.sybase.jaguar.server.jvm.verbose Specifies whether the Java
class loader should write information about each class loaded to the server
log. The default is false, which indicates that class loader logging is
disabled.

• com.sybase.jaguar.server.jvm.verboseGC Specifies whether the Java
garbage collector should write information about each that is destroyed to
the server log. The default is false, which indicates that garbage collector
logging is disabled

• com.sybase.jaguar.server.roleservice The name of a custom
component that evaluates user’s role membership to control access to
components and HTTP URLs. The default value is AseAuth/DbAuth.

• com.sybase.jaguar.server.services A list of components that run as
service components in the server.

• com.sybase.jaguar.server.timeout Specifies the default instance
timeout for stateful components running in the server.

• com.sybase.jaguar.server.tx_timeout Specifies the default transaction
timeout for components running in the server.

See “Configuring server stack size” on page 151 for information about setting
server stack size using the com.sybase.jaguar.server.stacksize parameter.

Chapter 10 Configuring EJB Server

151

Configuring server stack size
Your EJB Server has a stack size property that determines the amount of
memory reserved for the call stack associated with each thread created by the
server. EJB Server runs each client request on a different thread, so the stack
size is the dominant factor in determining how many client requests can be
served simultaneously.

The default stack size is 256 K. This is appropriate for almost all situations, and
provides adequate reserve memory for the worst case loads that have been
tested by Sybase engineering and customers.

For production servers that see heavy use from large numbers of clients, you
may wish to decrease the stack size from the default value. However, you must
ensure that the stack size is adequate for the components running on the server.
If the stack size is too small, your server may experience thread stack overflow
errors (these are recorded in the server log).

 Warning! Under no circumstances should you reduce the stack size below
64K. If you reduce the stack size, test your server thoroughly under worst-case
client loads and check the log for stack overflow errors.

❖ Configuring stack size for servers

1 Highlight the icon for the EJB Server and select File | Server Properties.

2 Display the All Properties tab. Scroll down if necessary to the
com.sybase.jaguar.server.stacksize property. Server properties are listed in
alphabetical order.

3 Enter a stack size in the Value field, specified in bytes as a decimal
number. (The field will display with no value if you have not specified a
value before. This means the default setting is in effect.)

4 Stop and restart the EJB Server.

Character sets

152

Character sets
EJB Server and Adaptive Server must have identical character sets. If you
change the value of the Adaptive Server character set, you must also change
the value of the EJB Server character set. You can set the EJB Server character
set in the All Properties tab of the EJB Server properties sheet. See “All
Properties” on page 149.

Shared-memory connections
Adaptive Server uses the value of the number of user connections configuration
parameter to establish the number of shared-memory connections for EJB
Server. Thus, if number of user connections is 30, Adaptive Server establishes
10 shared-memory connections for EJB Server. Shared-memory connections
are not a subset of user connections, and are not subtracted from the number of
user connections.

To increase the number of user connections for shared memory, you must:

1 Increase number of user connections to a number one-third of which is the
number of desired shared-memory connections.

2 Reboot Adaptive Server.

Although number of user connections is a dynamic configuration parameter,
you must restart the server to change the number of user connections for shared
memory. See the System Administration Guide for more information.

Chapter 10 Configuring EJB Server

153

Managing connection caches
A connection cache maintains a pool of available connections that EJB Server
components use to interact with the data server. You must configure connection
caches for the specific user/database combinations used by your components.
A connection cache entry improves performance by eliminating the overhead
associated with setting up a connection when one is required.

Note You must install caches in an EJB Server before components in that
server can access the cache. You must refresh the cache or refresh the server
using View | Refresh All, or restart the server before any changes to the list of
installed caches or to cache properties take effect.

Creating and installing a new connection cache
To create a new connection cache and add it to an EJB Server:

1 Double-click the EJB Server icon.

2 Double-click the Installed Connection Caches folder.

3 Double-click the Add new connection cache icon in the right side of the
window.

4 Follow directions in the Add Connection Cache wizard. You will enter:

• The connection cache name

• An optional description of the cache

• The JDBC driver name

• The server name, which is the URL appropriate for JDBC calls

• The user name for the cache

• The user password for the cache

5 Configure the connection cache properties as described in “General tab
connection cache properties” on page 155.

Configured connection cache entries appear on the right side of the window of
the Adaptive Server plug-in whenever you highlight the Installed Connection
Cache folder on the left side of the window.

Managing connection caches

154

Modifying connection caches
To view or modify a connection cache entry:

1 Expand the Installed Connection Cache folder.

2 Highlight the connection cache you want to modify.

3 From the File menu, select one of the following options:

• Properties – view or modify this connection cache’s properties. See
“General tab connection cache properties” on page 155.

• Delete – removes the connection cache from the server.

Modifying connection cache properties
To modify the properties of a connection cache:

1 Double-click the EJB Server for which you want to modify connection
cache properties.

2 Click on the Installed Connection Cache folder.

3 Highlight the connection cache you want to modify.

4 Select File | Properties. You see the Connection Cache Properties window,
which contains these tabs:

• General – define general server properties.

• Advanced – edit server property settings in their raw format, that is,
as they are stored in the configuration repository.

You must use the cache properties file to manually configure the additional
properties described in “Other cache settings” on page 156.

After you have configured a connection cache, click OK to save your changes,
or click Cancel to disregard them. You must refresh a newly installed cache for
any changes to take effect, and you should test the connection with Ping before
trying to access it from components. These operations are described in detail
below.

You cannot define two distinct caches that use identical values for server, user,
password, and JDBC driver. If two caches are defined with matching values for
these settings, and your application requests one, EJB Server returns the first
match that is found.

Chapter 10 Configuring EJB Server

155

Saving property changes and refreshing the server:
If you modify any property, click OK or Apply in the Connection Cache
Properties sheet to save your changes, or click Cancel to disregard the changes.

When you modify server properties you must refresh the server for the changes
to take effect. To refresh the server, highlight the server icon and select
View | Refresh All.

General

Select the General tab on the Connection Cache Properties window to set the
basic connection cache options described in Table 10-3.

From the General tab window, you can test the cache configuration to verify
that connections can be made using the options you supply. See “Connection
cache ping” on page 158 for more information.

Table 10-3: General tab connection cache properties

 Property Description Comments/Example

Connection
Cache
Name

The name for this cache
configuration.

Connection cache names are limited to one word, which can
contain letters, numbers, and underscores. Names are case-
sensitive. You cannot modify the name of an existing connection
cache.

Description
for the
cache

The description of the
connection cache section.

The description is a string of up to 255 characters.

Server
Name

The URL appropriate for use in
JDBC calls.

For the Sybase shared-memory JDBC driver, use:

jdbc:sybase:shm:null:0

where host name = null and port = 0 (zero), because the connection
is made through shared memory and not through the network.

Driver name Set the driver name and
properties using the Driver tab
on the General window.

Your choice for library type is:

• JDBC – for connections
using the Sybase shared-
memory JDBC driver.

The names for each of the cache types are:

• For NT platforms:

JDBC – the Java class name for the driver class. For example,
the Sybase jConnect 5.2 driver requires
com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource.

• For UNIX platforms:

JDBC – the Java class name for the driver class; for example,
com.sybase.jdbc2.jdbc.SybDriver.

User Name The user name for this cache. The name used (along with a password) to connect to the database
identified by the server entry.

Managing connection caches

156

Advanced

Select the Advanced tab on the Connection Cache Properties window to set the
cache options described in Table 10-4

Table 10-4: Advanced tab connection cache properties

Other cache settings

The cache settings described in this section can not be set in the Adaptive
Server plug-in. You must edit the underlying configuration file to change them.
Use a text editor to edit the cache’s property file located in the
$SYBASE/$SYBASE_EJB/Repository/ConnCache subdirectory. The file is
CacheName.props, where CacheName represents the cache name as displayed
in the Adaptive Server plug-in.

Password The password for this cache. The password used in connection with a user name to connect to
the database identified by the server entry. Passwords are
encrypted in the EJB Server configuration file.

The Adaptive Server plug-in does not display passwords for
existing caches. If you need to change a password, enter the new
password and click OK.

 Property Description Comments/Example

 Property Description Comments/Example

Enable
cache-by-
name access

Select this option to allow
retrieval of a database
connection using the
connection cache name instead
of requiring a user name and
password.

By default, a cache cannot be retrieved by its name. You must be
logged in as sa to update the cache’s properties to allow the cache
to be retrieved by name.

Cache-by-name is less secure than requiring a user name and
password.

Enable
connection
sanity check

Whether connections should be
verified before releasing them
into the cache.

Components may release a connection that is not ready for use by
another component. For example, there may be unretrieved results
on the connection. Enabling this option causes EJB Server to test
whether the connection is usable before replacing it in the cache.
Disabling the option increases performance, but may complicate
debugging.

Number of
Connections
in Cache

The number of connections in
the pool.

After a connection is released, it is returned to the pool. The
default value is 10. You can increase this number if performance
suffers due to an insufficient number of available connections.

Service
Name

The name of the Adaptive
Server to which the Sybase
shared-memory JDBC driver
connects.

Service name is ignored for caches that use JDBC drivers other
than jConnect.™

Chapter 10 Configuring EJB Server

157

JDBC connection properties

For a JDBC connection cache, these connection properties allow you to specify
settings beyond those shown in the Connection Cache Properties dialog box.
Different JDBC drivers recognize different sets of properties.

For the Sybase high-speed, shared-memory JDBC driver, define cache
properties in this form:

jdbc:sybase:shm:null:0

Any property whose name does not begin with com.sybase.jaguar is
passed to the JDBC driver as a connection property. For example:

PACKETSIZE=2048

If a property setting conflicts with a setting in the Connection Cache Properties
dialog box, the dialog box setting takes precedence.

Enabling set-proxy support

Adaptive Server Enterprise allows a user to assume the identity and privileges
of another user. This feature can be used with any database that recognizes the
command:

set session authorization “login-name”

When proxy support is enabled, connections retrieved from the cache are set to
act as a proxy for the username associated with the EJB Server client. To set-
proxy to another user name, use the Java JCMCache.getProxyConnection()
method in your component.

Set-proxy support must be enabled in the cache properties file before
components can take advantage of it. To enable set-proxy support, add the
following line to the cache properties file:

com.sybase.jaguar.conncache.ssa=true

To disable support, delete this line or change true to false.

Connection cache refresh
If you have just installed the cache in a server or modified an installed cache,
refresh the server or the connection cache before you attempt to test the cache.
You can refresh as follows:

• To refresh the cache:

Managing connection caches

158

a Highlight the Installed Connection Caches folder under the server
icon where the cache is installed.

b Select View | Refresh Folder.

• To refresh the server, highlight the server icon where the cache is installed,
then choose View | Refresh All. All caches installed in the server will be
refreshed.

Refreshing a cache may affect running components that are using the cache,
specifically:

• If you change the connectivity library setting, cache references held by
components become invalid. Attempts to retrieve connections or query
cache properties will cause errors. In this case, the component must
retrieve a new cache handle.

• If you change other properties, such as user name, password, server name,
or the number of connections in a cache, cache references remain valid,
but components may be affected by the changed settings. For example, if
you change the server name, connections retrieved after the cache has been
refreshed will go to the server indicated by the new name.

Connection cache ping
This feature allows you to test the cache configuration to verify that
connections can be made using the supplied parameters. To ping, the
connection must be installed in the server that the Adaptive Server plug-in is
connected to. If you have just installed the cache or changed any settings,
refresh the cache before testing it.

To test the cache with Ping:

1 Open the Installed Connection Cache folder under the EJB Server icon
where the cache is installed.

2 Right-click on the icon of the cache you want to ping.

3 Choose File | Properties.

4 In the General tab of the Connection Cache Properties dialog, click Ping.

5 The Adaptive Server plug-in reports whether the connection attempt
succeeded.

If Ping fails, check the message text for a description of the problem. The
server log file may contain additional information about the cause of the error.

Chapter 10 Configuring EJB Server

159

If you change the cache properties to correct the problem, you must refresh the
cache before testing again.

Managing XA resources
EJB Server uses the two-phase commit protocol for distributed transactions. To
use this feature, your Adaptive Server installation must have a valid
ASE_DTM license.

You can use the Adaptive Server plug-in to:

• Enable the OTS/XA feature for EJB Server

• Create XA connection resources for accessing Adaptive Server

Setting up XA resources
This section describes procedures for configuring and enabling XA resources
on Adaptive Server and EJB Server.

❖ To configure Adaptive Server and EJB Server for XA resources:

You can also perform steps 2 and 4 from the Adaptive Server plug-in.

1 Make a copy of the $SYBASE/$SYBASE_EJB/config/afconfig.dat file and
move the copy to a secure location. If the XA configuration process fails,
you will need to copy an uncorrupted version of this file back into the
release area before reconfiguring XA resources.

2 Enable Distributed Transaction Management (DTM) on Adaptive Server:

sp_configure ’enable dtm’, 1

3 Run the script sqlserver12.sql located in
$SYBASE/$SYBASE_EJB/html/classes/sp.

4 Grant the dtm_tm_role system role to the user in Adaptive Server:

sp_role ’grant’, dtm_tm_role, user_name

5 Create the OTS/XA transaction log device in $SYBASE/$SYBASE_EJB:

• From the UNIX command shell, execute:

echo x | dd seek=8k of=server_nameOTSLog.dev

Managing XA resources

160

• From the DOS prompt on Windows NT, execute:

Filevol server_nameOTSLog.dev 4000K

where server_name is the physical name of your EJB Server. If you do not
create a log file, EJB Server will not start up.

6 Shutdown and restart Adaptive Server.

❖ To enable EJB Server for OTS/XA transactions:

Enable the EJB Server for OTS/XA transactions from the Adaptive Server
plug-in:

1 Highlight the EJB Server folder.

2 Select File | Properties.

3 Select the Transactions tab.

4 Select OTS/XA Transactions.

5 Press OK.

Creating XA resources
You must configure XA resources to access a specific database. XA resources
differ from connection caches in that XA resources are XA-Library interfaces
that maintain their own connection pool separate from the connection cache
connection pool.

If a get connection call (such as the Java getConnection method call) is in a
transaction, the XA resource is automatically used to return a connection. If a
get connection call is not in a transaction, the connection cache is automatically
used. If the transactional behavior for a component uses the Supported option,
then EJB Server determines at runtime whether the component executes its get
connection calls in a transaction; if it does, you must configure both a
connection cache and a corresponding XA resource for a database.

If you execute a transaction without an XA resource configured for a database,
the EJB Server connection manager returns CS_FAIL.

By default, EJB Server uses the XA resource library for the JDBC connection:
com.sybase.jdbc2.jdbc.SybXADataSource. You can also use these shared
libraries or DLLs to obtain an XA resource that is exported from the database
connection libraries:

Chapter 10 Configuring EJB Server

161

To change the shared library or DLL, edit the connection cache properties file
%SYBASE%\%SYBASE_EJB%Repository\ConnCache\
<cache_name>.props. For example, to instruct EJB Server to use
oraclient8.dll instead of xa80.dll for Oracle OCI 8.1.x, add this line to the
connection cache properties file:

com.sybase.jaguar.conncache.xadllname = oraclient8.dll

Note You must install XA resources in an EJB Server before components in
that server can access the XA resources. You must refresh XA resources or
refresh the server using View | Refresh All in the Adaptive Server plug-in, or
restart the server before any changes to the list of installed XA resources or to
XA resource properties take effect.

If a configured XA resource is not running or cannot be connected to, the EJB
Server cannot initialize. Copy an uncorrupted version of the
$SYBASE/$SYBASE_EJB/config/afconfig.dat file back into the release area
and reconfiguring XA resources. See “To enable EJB Server for OTS/XA
transactions:” on page 160.

❖ To create OTS/XA transactions for XA resources:

See Table 10-5 for a description of the XA properties you enter when you
create an OTS/XA transaction resource.

1 Double-click the XA Resources folder.

2 Double-click the Add an XA resource icon in the right side of the window.

The Add an XA Resource wizard displays.

3 Enter a name and description of the XA resource. Press Next.

4 Enter the server name, a user name, and a password in the Database
Connection Information window. Press Next.

5 Enter a dll or class name in the Connectivity Information window. Press
Next.

Connection library Shared library DLL

Sybase Client Library 11.0 libjxa.so libjxa.dll

Oracle OCI 7.x libclntsh.so xa73.dll

Oracle OCI 8.x libclntsh.so xa80.dll

Managing XA resources

162

6 Enter a database name, a default string, an open string, and a close string
in the XA Driver Information window.

Note If the Open String is set incorrectly, the EJB Server does not
initialize.

Press Finish.

Table 10-5: XA resource properties

See your XA resource documentation for more information about the Open
Suffix and Close String syntax

Property Description

Name A name for the XA resource.

Description A brief phrase describing the purpose of the XA resource.

Server Name Name of the XA resource server for shared memory. Enter:
NetworkProtocol=shm:Server=null:Port=0

User Name A name you can use to access the server.

Password The password for the user.

DLL or Class Name The file name of the XA resource library. Enter:
com.sybase.jdbc2.jdbc.SybXADataSource

Database Name If you selected CT-LIB, OCI 7.x, or 8.x, specify the database name.

Default String The string used to connect to the XA resource. You cannot modify
this string, which is automatically built from the information that you
entered in the previous tabs.

Open String In this optional field, you can specify any valid open string options.
For example, for a Sybase Client-Library 11.0 XA resource, you can
enter:

-L logfile
where logfile is where you want to store log information.

Close String In this optional field, you can specify a value used by the resource to
close a connection.

Chapter 10 Configuring EJB Server

163

Configuring Listeners
A listener is an EJB Server port that communicates to clients using various
protocols. Supported protocols are IIOP, TDS, and HTTP.

This section describes the tasks required to configure listeners. You can:

• Create a new listener.

• Modify listener settings.

Preconfigured listeners
EJB Server comes with preconfigured listeners for all protocols. The default
host for these listeners is specified at installation. You can also modify port
number settings for the preconfigured listeners. For more information, see
“Modifying an existing listener” on page 164.

Listener failover

If a server cannot retrieve listener information from the repository for an IIOP
listener or if an IIOP listener has not been configured, the server attempts to
open a listener at this address:

IIOP: localhost, 9000

Listener start-up can fail if a port is already in use. You can verify the listener
addresses in use by viewing the initial log entries in the srv.log file.

Configuring listeners
This section describes how to create, modify, and delete a listener. All of the
configuration tasks require you to first access the Listeners folder from the
Adaptive Server plug-in:

1 Double-click the Adaptive Server icon.

2 Double-click the Enterprise Java Beans folder.

3 Double-click the EJB Server folder.

4 Click the Listeners folder on the right side of the window.

Managing XA resources

164

❖ Creating a new listener

1 Double-click the Add new listener icon.

The Add new listener wizard displays.

2 Add the name, host name, and port number for the listener in the Name and
Description window. Press Next. See Table 10-6

3 Select the iiop, http, or tds protocol from the drop-down menu on the
Select Type of Protocol window. Press Next.

4 Verify the new listener on the Summary Page Window. Press Finish.

The new listener appears on the right side of the window.

❖ Modifying an existing listener

1 Highlight the listener you want to modify.

2 Select File | Properties.

3 Make your modifications and click OK. Listener properties are described
in Table 10-6.

❖ Deleting a listener

1 Highlight the listener you want to delete.

2 Select File | Delete.

Table 10-6: Listener profile properties

Property Description Comments/example

Protocol Select the protocol from the
drop-down list:

• IIOP

• HTTP

• TDS

TDS, IIOP, and HTTP do not provide encryption. TDS and
IIOP provide user name and password-based authentication.

Host name The name or IP address of the
EJB Server host to which the
listener is being assigned.

Use the actual machine name or IP address. This allows
clients from other machines access to EJB Server.

Port The port number on the host to
which the listener is assigned.

Make sure that the port is not in use by any other service.

Chapter 10 Configuring EJB Server

165

Replacing an EJB Server
Use the Sybase Installer to add an EJB Server to a new Adaptive Server host.
You can replace an existing EJB Server with a new EJB Server using the
Adaptive Server plug-in.

 Warning! Replacing an EJB Server removes the existing EJB Server from
Sybase Central and from the sysservers table in the master database.
Connection caches and packages associated with the old EJB Server are lost.

Use caution when replacing an EJB Server.

Before replacing an EJB Server, make a list of the packages and connection
caches in the existing server that you want to redeploy to the new server.

❖ To replace the EJB Server:

1 Highlight the Enterprise JavaBeans folder.

2 Double-click the Add an EJB Server icon in the right window.

The Add an EJB Server wizard displays.

3 Enter a name for the new server. Server names must be one word, and can
be up to 30 characters long.

4 Enter a port number for the new server. The default is 9000.

5 Select Finish.

6 Install AseAuth from the Repository.

See “Installing a package in the Adaptive Server plug-in” on page 72 for
how to install a package.

7 Set these property values on the All Properties tab of the EJB Server
properties window for AseAuth:

• com.sybase.jaguar.server.authservice=AseAuth/DbAuth

• com.sybase.jaguar.server.dbsecurityurl=jdbc:sybase:shm:null:0

• com.sybase.jaguar.server.dbsecuritydriver=
com.sybase.jdbc2.jdbc.SybDriver

• com.sybase.jaguar.server.dbauthlogfile=dbauth.log or the name of
the EJB Server log file (optional)

• com.sybase.jaguar.service.roleservice=AseAuth/DbAuth

Replacing an EJB Server

166

See “All Properties” on page 149 for information on how to set these
options.

8 Start the EJB Server. See “Starting EJB Server independently” on page 25.

9 Reimport packages from the Repository.

10 Reconfigure the connection caches.

167

C H A P T E R 1 1 EJB Server Naming Services

A naming service lets you associate a logical name with an object, such as
a package and component. Naming helps EJB Server applications easily
locate an object anywhere on a network, then implement the referenced
object.

The naming service “binds” a name to an object. The combination of
bound name and its referenced object is the name context. The referenced
object in a name context can be a component within a package or even an
existing name context, the same way a named directory can contain a file
or other named directory.

The collection of name context information—each object and its bound
name—comprises the namespace. When client applications reference an
object, they look to the namespace to cross-reference or resolve the name
with the referenced object.

How does the EJB Server naming service work?
The process of binding objects is performed by a name server. Each EJB
Server can be its own name server, or you can configure an EJB Server to
use another server as its name server. You can also use an external naming
service, such as an LDAP server, in conjunction with the EJB Server
naming service.

You set the naming service options for each EJB Server using the Naming
Service tab on the Server Properties window.

Topic Page
How does the EJB Server naming service work? 167

JNDI support 171

Configuring the EJB Server naming service 176

Using an LDAP server with EJB Server 177

How does the EJB Server naming service work?

168

EJB Server initial context
The EJB Server naming service relies on an “initial” or default name context
for each EJB Server. You set the initial context when you set up the EJB Server
Naming Service properties.

The server name context syntax follows a specific organization or schema. You
can use this schema to represent the hierarchy of objects in the namespace, for
example by geographic region, organizational unit, and so on.

If you use an EJB Server as the name EJB Server server uses this format:

<Level 1>/<Level 2>/<Level 3>/...

The number of levels depends on the hierarchy you want to represent. For
example:

US/sybase/finance
US/sybase/marketing
US/sybase/sales

If you use an LDAP server as an external naming service, the initial context
must follow the syntax and schema of the LDAP server. LDAP servers have
predefined schema for common objects such as country, organization, and
organizational unit. EJB Server uses the following format for an LDAP-
compatible initial context:

ou=<organizational unit>, o=<organization>, c=<country>

Using the previous examples, the initial contexts would be:

ou=finance,o=sybase,c=US
ou=marketing,o=sybase,c=US
ou=sales,o=sybase,c=US

On start-up, the name server binds all object implementations on an EJB Server
to the initial context of the server on which the object is installed. Once the
server binds an object, the structure of the resulting name context is:

<initial context>/<package>/<component>

where

<initial context> is the initial context property for the server where the
component is installed.

<package> is the name of the package being bound, as displayed in the
Adaptive Server plug-in.

Chapter 11 EJB Server Naming Services

169

<component> is the name of the component being bound, as displayed in the
Adaptive Server plug-in.

Note You can set the server properties to enable password protection for name
binding on a EJB Server name server. See “Name binding password security”
on page 177.

Name binding example
To illustrate how an EJB Server name server uses the initial context to create
name contexts for objects on multiple servers, assume two EJB Servers:

• Server A contains package Pkg1 and components CompX and CompY. You
assign the server an initial context of /us/sybase/serverA.

• Designate server B to be the name server for server A by specifying the
URL for server B (iiop://myhost:9050) in its Naming Services properties.

When you start server A, it connects to server B, using the name server URL
you entered in server A’s Naming Service properties. The name server gets the
initial context for server A and binds each object installed on server A. The
resulting name contexts are based on server A’s initial context, the package
name, and the components in the package. For this example, the name server
creates the following bindings:

/us/sybase/serverA/Pkg1/CompX
/us/sybase/serverA/Pkg1/CompY

Figure 11-1 illustrates the name binding process.

How does the EJB Server naming service work?

170

Figure 11-1: Name binding process

An application referencing object CompY uses the URL of the name server,
followed by the object’s name context. For example:

iiop://myhost:9050/us/sybase/serverA/Pkg1/CompY

The name server finds the name context in the namespace, resolves the name
context with the object it references, then implements the object.

If you had not assigned an initial context to Server A, the name server, server
B, would create name contexts for objects Pkg1/CompX and Pkg1/CompY using
the initial context of the name server. In this case, the client application can
simply retrieve CompY using this URL:

iiop://myhost:9050/Pkg1/CompY

Transient vs. persistent storage
The EJB Server naming service inherently provides transient object name
storage. The name server is instantiated when you start an EJB Server, and
binds names to all the known object references. The name server provides the
bound name and object references to the EJB Server’s session manager object.
Because this information is stored in memory, the name context information is
retained only as long as the EJB Server is running.

You can add persistent object name storage capabilities to EJB Server by using
an external directory naming service, such as an LDAP server. The external
server retains object name information, and the EJB Server name server
updates this information whenever it creates new bindings or unbinds existing
ones.

Pkg1

CompX CompY

Server A Server B
/us/sybase/serverA

Bind:
/us/sybase/serverA/Pkg1/CompX
/us/sybase/serverA/Pkg1/CompY

Designated name server for
Server A

Server name: myhost
Server port: 9050

Chapter 11 EJB Server Naming Services

171

To use an external naming service, specify the URL of the external server in
the Naming Service properties of the designated EJB Server name server. You
must also provide a manager DN (distinguished name) and password that has
exclusive access to all objects in the LDAP server database for EJB Server to
be able to update the stored name context information.

JNDI support
Java Naming and Directory Interface (JNDI) is a standard Java interface for
accessing distributed objects and services by name. It provides a portable,
unified interface for naming and directory services. The JNDI specification is
independent of any specific directory or naming service such as LDAP, NDS,
DCE/CDS, or NIS.

The EJB Server JNDI implementation includes the JNDI service provider
interface (SPI), which enables you to use a variety of custom directory and
naming services. EJB Server uses the SPI in conjunction with the CosNaming
interface to provide component lookup capability. Given a bound name, the
SPI locates the referenced package and component. Once it locates the
component, the SPI works with the client stub interface to instantiate the
component and return the requested object.

JNDI version level
In EJB Servers, the JNDI InitialContext object follows the JNDI 1.2 interface
specification. When you start the EJB Server, the JNDI classes required for the
server’s JDK version are configured automatically.

JNDI J2EE features
EJB Server supports the JNDI features required by the Java 2 Enterprise
Edition (J2EE) platform specification.

In J2EE, you can use the application component’s naming environment to
customize an application’s business logic without accessing the source code.
The application component’s container implements the environment as a JNDI
naming context and provides the JNDI interfaces to access the environment
properties that you define in the deployment descriptor.

JNDI support

172

Environment properties

When you deploy a J2EE application, use the deployment descriptor to define
all the environment properties that the application component needs to access.
This sample code defines the environment property (env-entry) maxExemptions
as an Integer and sets its value to 10:

<env-entry>
<description>
The maximum number of tax exemptions

</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>

The information between the opening and closing env-entry tags defines an
environment entry element, which consists of:

• description This is optional.

• env-entry-name The environment property name, relative to the
java:comp/env context.

• env-entry-type The environment property’s Java datatype must be one
of: Boolean, Byte, Double, Float, Integer, Long, Short, or String.

• env-entry-value The environment property value, which is optional.

Within the same container, all instances of an application component share the
same environment properties. The component instances cannot modify the
environment at runtime.

An application component instance uses the JNDI interfaces to locate the
environment naming context and access the environment properties. To locate
the naming context, an application creates a javax.naming.InitialContext object
and gets the InitialContext for java:comp/env. In this example, the application
retrieves the value of the environment property maxExemptions and uses that
value to determine an outcome:

Context initContext = new InitialContext();
Context myEnv =

(Context)initContext.lookup(“java:comp/env”);

// Get the maximum number of tax exemptions
Integer max=(Integer)myEnv.lookup(“maxExemptions”);

// Get the minimum number of tax exemptions
Integer min = (Integer)myEnv.lookup(“minExemptions”);

Chapter 11 EJB Server Naming Services

173

// Use these properties to customize the business logic
if (numberOfExemptions > max.intValue() ||

(numberOfExemptions < min.intValue())
throw new InvalidNumberOfExemptionsException();

Default name service
When you call the empty constructor to create a new InitialContext, EJB Server
sets the Context.INITIAL_CONTEXT_FACTORY system property and sets
the EJB Server EJB name service as the default.

EJB references

An EJB reference identifies the home of an enterprise Bean. You can use the
deployment descriptor to create a link between an EJB reference and an
enterprise Bean, contained within an EJB JAR file. Deployment descriptor
interfaces allow an application component to access an enterprise Bean’s home
interface using EJB references.

To locate an enterprise Bean’s home interface, declare an EJB reference in the
deployment descriptor and use JNDI to look up the interface. The referenced
enterprise Bean must be in the ejb subcontext of the application component’s
environment.

Declaring an EJB
reference

You can declare an EJB reference in the deployment descriptor using the ejb-
ref element. The data between the opening and closing ejb-ref tags defines an
ejb-ref element. This code sample defines an EJB reference to the Employee
entity Bean:

<ejb-ref>
<description>

Reference to the Employee entity Bean
</description>
<ejb-ref-name>ejb/Employee</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wooster.empl.EmployeeHome</home>
<remote>com.wooster.empl.Employee</remote>

</ejb-ref>

An ejb-ref element contains:

• description This is optional.

• ejb-ref-name The name of the Bean used in the application component.

JNDI support

174

• ejb-ref-type The Bean type, Entity or Session.

• home The expected Java type of the home interface.

• remote The expected Java type of the remote interface.

• ejb-link This is optional.

This code sample illustrates how to use JNDI to look up the home interface of
the Employee enterprise Bean:

// Get the default initial JNDI context
Context initContext = new InitialContext();

// Look up the home interface of the Employee enterprise
// Bean
Object result =

initContext.lookup(“java:comp/env/ejb/Employee”);

// Convert the result to the correct type
EmployeeHome empHome = (EmployeeHome)

javax.rmi.PortableRemoteObject.narrow(result,
EmployeeHome.class);

Declaring an EJB link You can define a link from an EJB reference to an enterprise Bean by declaring
an ejb-link element in the deployment descriptor. The application component
and the target enterprise Bean must be in the same J2EE application. This
sample code creates a link to the Employee enterprise Bean, by adding an ejb-
link element to the Bean’s EJB reference definition:

<ejb-ref>
<description>

Reference to the Employee entity Bean
</description>
<ejb-ref-name>ejb/Employee</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wooster.empl.EmployeeHome</home>
<remote>com.wooster.empl.Employee</remote>
<ejb-link>Employee</ejb-link>

</ejb-ref>

For information about using the Adaptive Server plug-in to add and configure
EJB references in EJB components, see Chapter 6, “Working with EJB
Packages and Components.”

Chapter 11 EJB Server Naming Services

175

Resource factory references

A resource factory is an object that you use to create resources. You can assign
a logical name to a resource factory in the deployment descriptor.

A resource-ref element defines a single resource factory reference. This code
sample defines a reference to the resource factory that implements the
DataSource interface:

<resource-ref>
<description>

Data source for the database in which the Employee
enterprise Bean records transactions

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

A resource-ref element contains:

• description This is optional.

• res-ref-name Resource reference name used in the application’s code.

• res-type Resource Java datatype that the application expects.

• res-auth Resource sign-on authorization, Bean or Container.

This code sample obtains a reference to the resource factory that implements
the DataSource interface, and uses that reference to get a database connection
(resource):

// Obtain the initial JNDI context
Context initContext = new InitialContext();

// Look up the resource factory using JNDI
javax.sql.DataSource ds = (javax.sql.DataSource)

initContext.lookup
(“java:comp/env/jdbc/EmployeeAppDB”);

// Get a database connection
java.sql.Connection connection = ds.getConnection();

For information about using the Adaptive Server plug-in to add and configure
resource references in EJB components, see Chapter 6, “Working with EJB
Packages and Components.”

Configuring the EJB Server naming service

176

UserTransaction references

J2EE application components can use the Java Transaction API (JTA)
UserTransaction interface to manage transactions. A component instance can
look up an object that implements the interface using the JNDI name
java:comp/UserTransaction.

In this code sample, an application component uses the interface to manage a
transaction:

// Get the initial JNDI context
Context initContext = new InitialContext();

// Look up the UserTransaction object
UserTransaction tran = (UserTransaction)

initContext.lookup(“java:comp/UserTransaction”);

// Start a transaction
tran.begin();

// data updates

// Commit the transaction
tran.commit();

Configuring the EJB Server naming service
Use the Naming Service tab on the Server Properties window to set the EJB
Server’s naming service options. You can use the Naming Service properties to
configure an EJB Server to be a name server, or point to another EJB Server as
its name server.

The Naming Service property sheet includes:

• The EJB Server’s initial context.

• Whether or not the EJB Server is enabled as a name server.

• If the server is not enabled as a name server, the URL for the EJB Server
acting as the name server.

• Heartbeat detection – periodically verifies that name servers are either
accepting client connections or have failed.

Chapter 11 EJB Server Naming Services

177

• If you are using an LDAP server to provide persistent name storage, the
URL of the LDAP name server, as well as the manager DN (distinguished
name) for the LDAP server.

For complete information about setting the Naming Service properties for an
EJB Server, see “Naming Service” on page 148.

Name binding password security
You can establish password protection on the EJB Server naming service to
allow name binding only from designated EJB Servers. This prevents
unauthorized applications from creating name bindings using an EJB Server
name server.

To use the name binding password feature, you must set the:

com.sybase.jaguar.server.CosNaming.bindpassword

property for the name server and each server participating in the naming
service. You set this property using the All Properties tab in the Server
Properties window. The default value is “jaguar.”

All servers participating in the password-protected name service must have the
same password as the name server. If the bindpassword property is empty, or
does not exist in the property file for a name server, the name server accepts
binds from any source.

Using an LDAP server with EJB Server
To add persistent object name storage capabilities to EJB Server, you can use
an external directory naming service, such as an LDAP server. The EJB Server
properties include an optional URL for specifying the port for the external
name server.

When you use an external name server, EJB Server uses JNDI to communicate
with the name server through the specified URL.

Using an LDAP server with EJB Server

178

LDAP object schema and EJB Server objects
LDAP servers have predefined schema for common objects such as country,
organization, and organizational unit. EJB Server uses the following format for
an LDAP-compatible initial context:

ou=<organizational unit>, o=<organization>, c=<country>

Storing EJB Server object bindings on an LDAP server
When you use an LDAP server with an EJB Server name server, the
CosNaming component binds all implemented objects on the servers that use
the designated EJB Server name server, and stores the name context
information on the LDAP server. If EJB Server detects previously-bound
objects on the external name server, it updates the existing bindings with
current name context information. When you shut down the EJB Server, it
unbinds the stored information.

❖ To connect an EJB Server name server to an LDAP server:

1 On start-up, the EJB Server name server connects to the LDAP server
using the URL specified in the EJB Server name server’s Naming Service
properties.

2 The EJB Server name server authenticates the connection to the LDAP
server using the manager DN specified in the EJB Server name server’s
Naming Service properties.

3 The EJB Server name server attempts to retrieve any existing matching
name contexts from the LDAP server. If successful, the EJB Server name
server uses the existing name context information.

4 The EJB Server name server prepares the server object with the required
attributes.

5 The EJB Server name server attempts to add the server object to the LDAP
server. If the object already exists, the LDAP server updates the existing
object with the current attributes.

6 The EJB Server server adds any new package/component name context
information, or modifies the existing information if necessary.

179

Symbols
, (comma)

in SQL statements xv
{} (curly braces)

in SQL statements xv
() (parentheses)

in SQL statements xv
[] (square brackets)

in SQL statements xv

A
activation, component

definition of 53
Adaptive Server plug-in 46, 131

application objects managed in 10
capabilities 22
generating EJB stubs with 98
overview of 9
setup 22
starting 22

addresses, network
configuring 8
specifying in EJB clients 102

afconfig.dat file 159
applets

about 119
distributed applications 129

applications, EJB Server
architecture of 42
creating 41
defining components for 46
deployment of 48
design of 44
introduction to 41

architecture
EJB component 32
EJB Server 42

of EJB Server applications 42
AseAuth package 70, 165

B
basic tasks 21–27
bindpassword 177
building

components 47
EJB Server applications 41

business logic and EJB Server components 128

C
caches, connection

support for 13
character sets 12

conversions 12
classes, Java

for EJB components 92
classpath

environment variable 155
CLASSPATH environment variable 129, 137, 155
client session management 11
client/server applications

Java 119, 137
clients

deployment of 49
design considerations for 47
development process for 46
EJB 97
session management and 10
types of 8

code set
See Also character sets

comma (,)
in SQL statements xv

compiling

Index

Index

180

Java stubs 99
component

definition 18
executing methods on 19
instantiating 19
restarting after modifying 146, 155

component lifecycle
management of 11

component models
supported 18

component transaction server see EJB Server
components

building 47
client stubs and proxies for 8
configuring properties for 75
creation and destruction of 11, 52
defining 45
definition of 10
deploying 92
design of 45
development process for 46
EJB 31, 32, 69
installing to a package 75
introduction to 7
lifecycle management 11
lifecycle of 51, 52
overview 7
persistent 109
PowerJ 16
properties to control instance allocation 78
recycling of instances 54
refreshing 85
refreshing after modifying 10
stateful 54
stateful vs. stateless 54
stateless 52, 54
storage 116
supported types 7
transactional properties 58, 77
types of 7

concepts 19
concurrency

component property 79
configuring

listeners 163
connecting to the Adaptive Server 23

connection cache properties 155, 156
Advanced 156
cache-by-name 156
connection cache sanity 156
description 155
General 155
JDBC 157
name 155
number of connections 156
server name 155
service name 156

connection caches
creating 153
defining 46
installing 153
managing 153
modifying 154
removing 154
support for 13

connection caching 128
connection timeout

configuring for EJB clients 103
container 33
conventions

Java-SQL syntax xiii
Transact-SQL syntax xiv

create methods
IDL design pattern for 89

creating
listeners 164

curly braces ({})
in SQL statements xv

custom class list
configuring 85, 93

D
databases

data access and EJB Server 134
PowerJ JDBC access 126, 138
transaction management 132
transactions in Java 138

deactivation
definition of 53

default packages 70

Index

181

deleting
EJB Server packages 75, 94
listeners 164

deploying components
EJB JAR 48
PowerJ 48

deploying packages 10
description

component property 77
EJB Server package property 94

design, application 44
developing

EJB Server applications 41
developing clients 49
development process

PowerJ 119
disabling EJB Server 24
disconnecting from the Adaptive Server plug-in 23
distributed applications

applet clients 129
connection caching 134
Java and EJB Server 129
Java client, deploying 137
transaction management 132

Distributed Transaction Management (DTM) 159
dtm_tm_role system role 159

E
early deactivation

definition of 52
EJB 8

See also EJB clients, EJB components
client model 97
EJB Server support for 38
generating stubs for 98
home interfaces 89
JAR file 71, 95
overview of 31
remote interfaces 91

EJB architecture 32
EJB clients 32, 39

creating 97
EJB components

creating 69, 87

creating home interfaces for 89
defining remote interfaces for 91
deploying classes for 92
exporting 95
importing 71
introduction to 32
primary keys for 89
running 38
types of 33
using transactions in 35

EJB container 33
EJB Server 32

architecture 42
component lifecycle model 51
configuring 145
connection caching 128, 134
creating applications for 41
description 5
developing distributed applications with Java 129
disabling 24
early deactivation 132
EJB component support in 38
enabling 23
execution engine 6
instance pooling 136
Java components 128, 131
overview 1
prerequisite knowledge 17
result set management 134
roles 94
server runtime 6
ServerBean interface 136
services for components 131
shutting down 26
starting 25
transaction management 132
transaction processing model 55
verifying status 27

EJB Server properties 154
EJB Server roles 15
EJB Server runtime environment 20
EJB Server transactions

benefits of 56
explanation of 56

EJB transaction attributes 35
enabling EJB Server 23

Index

182

Enterprise JavaBeans
See EJB

Enterprise JavaBeans (EJB) components
building with PowerJ 141

entity Bean 34
EJB component type 33

entity components
definition of 109

environment variables
CLASSPATH 155
classpath 155

events, Java 127

F
finder methods

IDL design pattern for 90

G
garbage collection, Java

configuring for EJB clients 103
general server properties

description 147
generating

EJB stubs 86, 98

H
HTTP

protocol and EJB Server 129
support for 8

I
IIOP

support for 8
initial context 168
installing

components 74
instance pooling

adding support for 54

configuring 79
definition of 52

instance timeout
component property 80

instances, component
properties to configure allocation of 78

instantiating
components 19

intercomponent calls
and EJB Server transactions 56

interfaces
EJB home 89
EJB remote 91

J
J2EE roles 15, 91, 94
JAR file 71

EJB 1.1 71, 95
Java

components 120
packages for generated stubs 99
version for generated stubs 98

Java applications
about 120
developing 15

Java classes
for EJB components 92

Java clients
compiling 99

Java Connection Manager classes 135
JavaBean components, creating in PowerJ 121
jConnect database interface 138
JDBC

Java client/server applications 137

L
LDAP server 177
lifecycles

component states in 52
of components in general 51

listeners
configuring 8, 163

Index

183

creating 164
default host name 163
deleting 164
modifying 164
preconfigured 163
properties 164

localhost
default listener settings 163

M
managing connection caches 153
managing XA resources 159
mapping roles 94
menus

PowerJ 126
method

restarting after modifying 146, 155
middle-tier servers see EJB Server
modifying

listeners 164
multitier

application development overview 19

N
name binding 169
naming conventions

for Java stub files 99
naming services

about 167
explanation of 12
initial context 168
LDAP server 177
name binding 169
password 177
persistent storage 170
support for 12
transient storage 170

network
addresses 8
protocols 8

number of user connections parameter 152

O
object-oriented programming

PowerJ 15
OTS/XA

transaction options 58
overview

EJB Server features 1
multitier application development 19

P
package

restarting after modifying 155
package, EJB Server

definition 18
installing components in 75
modifying 93
properties of 94
refreshing after modifying 10
restarting after modifying 146
uses of 10

package, Java
for generated stub classes 99

parentheses ()
in SQL statements xv

persistence
container managed 110
for entity components 109
for stateful components 114
of component state 109

persistent storage 170
pooling

component property 79
port numbers

configuring for servers 8
specifying in EJB clients 102

PowerJ 9
about 15
application logic 127
building EJB components 141
classes 123, 127
code window 124
component palettes 125
component targets 131
components 120

Index

184

database access 126
database forms 138
data-bound controls 127, 140
defining EJB components in 38
deploying components 48
development process 119
events 127
forms 125
managed classes 127
menus 126
methods 127
projects 122
query object 126, 139
targets 122
transaction object 126, 138
user interface 125

preconfigured listeners
security profiles 163

primary keys
specifying for EJB components 89

properties
listeners 164
of components 75
of EJB Server packages 94
to configure component instance allocation 78
to configure threading behavior 78
to control transactional behavior 77

protocols
HTTP 8
IIOP 8
supported 8

proxies
purpose of 8

proxy objects
and stubs 18
definition of 8

R
refresh

disabling for components 85
replacing an EJB Server 165
restarting server after modifying

components 146, 155
methods 146, 155

packages 146, 155
result sets

explanation of 14
roles

EJB Server 15, 94
mapping of 94

runtime
server engine 6

runtime environment 20

S
server

naming service 167
server applications see components / EJB Server
server debugging and trace properties

log file name 148
log file size 148
truncate log on start-up 148

server log
srv.log file 148

server properties
General 146
initial context 168
Log/Trace 147
Naming Service 148, 167

servers
as managed in the Adaptive Server plug-inr 10
configuring network addresses for 8
overview of 6
protocols supported by 8
services provided by 6
use during development and testing 44

service components
definition of 6

services
provided by EJB Server 6

session
client, management of 10
definition 19

session Bean
EJB component type 33
stateful 33
stateless 34

session management 10

Index

185

shared-memory connections 152
sharing

component property 80
shutting down EJB Server 26
skeleton

definition 18
sp_extengine stored procedure 26
sp_serveroption stored procedure 25
square brackets []

in SQL statements xv
srv.log file

server log 148
starting EJB Server 25
state primitives, for transactions 61
stateful components

definition of 54
stateful session Bean 33
stateless components

creating 54
deactivation and instance pooling of 52
definition of 54

stateless session Bean 34
states

in component lifecycle 52
storage components

configuring 116
definition of 116

stored procedures
sp_extengine 26
sp_serveroption 25

stub object
definition of 8

stubs
and proxy objects 18
compiling 99
explanation of 8
generating 86

Sybase Central
Adaptive Server plug-in for 9
explanation of 9

syntax conventions
Java-SQL xiii
Transact-SQL xiv

System Administrator role 22

T
terminology

component based applications 18
thread safety

explanation of 13
threading models

component properties to configure 78
threads

management of 13
timeouts

configuring properties for 80
for EJB clients 103
transaction 62

trace flag properties 148
transaction options

OTS/XA 58
transaction timeout

component property 80
transaction, EJB Server

definition of 55
transactions

and intercomponent calls 56
benefits of using 56
component properties to configure 77
configuring timeout property for 62, 80
controlling outcome of 61
defining how components participate in 57
examples of 56, 63
how to commit and roll back 61
management by EJB Server 132
multi-component 61
overview of 55
semantics of 57
server processing of 55
specifying coordinators for 58
specifying how a component participates in 58
state primitives for 61
use in EJB components 35

transient storage 170

U
URL for JDBC calls 155
user interface, designing in PowerJ 125
user names

186

specifying in EJB clients 102

V
verifying status of EJB Server 27

W
Web applications

about 119

X
XA resources

afconfig.dat file 159
managing 159

	EJB Server User’s Guide
	About This Book
	CHAPTER 1 About EJB Server
	About EJB Server
	Features
	The EJB Server execution engine
	Component support
	Server-side component support
	Client stub/proxy support

	Network protocol support
	HTTP tunneling support

	Administration and development tools
	Client-session and component-lifecycle management
	Naming services
	Connection caching
	Transaction management
	Thread-safety features
	Result-set support
	Permissions and roles
	PowerJ overview

	CHAPTER 2 Getting Started
	Before you use EJB Server
	Terminology and concepts
	Terminology
	Concepts
	Developing an application
	The EJB Server runtime environment

	Basic tasks
	Using the Adaptive Server plug-in to Sybase Central
	Starting the Adaptive Server plug-in
	Disconnecting from the Adaptive Server host

	Enabling EJB Server
	Disabling EJB Server
	Starting EJB Server automatically
	Starting EJB Server independently
	Shutting down EJB Servers
	Verifying the status of EJB Server

	CHAPTER 3 Enterprise JavaBeans Overview
	About Enterprise JavaBean components
	EJB component types
	Stateful session Beans
	Stateless session Beans
	Entity Beans

	EJB transaction attribute values
	EJB container services

	EJB support
	Running EJB components in EJB Server
	EJB clients connecting to EJB Server

	CHAPTER 4 Creating Component-Based Applications
	Application architecture
	Designing the application
	Implementing components and clients
	Deploying the application
	Deploying components
	Developing clients

	CHAPTER 5 Understanding Transactions and Component Lifecycles
	Component lifecycles
	The EJB Server transaction processing model
	How EJB Server transactions work
	Benefits of using EJB Server transactions
	Defining transactional semantics
	Example
	Dynamic enlistment in Bean-managed transactions
	Entity Bean local diamonds

	OTS/XA transaction model

	CHAPTER 6 Working with EJB Packages and Components
	Packages and Enterprise JavaBean components
	Importing Enterprise JavaBeans

	Installing components
	Modifying components
	Configuring component properties
	General component properties
	Transactions tab component properties
	Instances tab component properties
	Resources tab component properties
	Persistence tab component properties
	All Properties tab

	Generating stubs and skeletons
	Creating Enterprise JavaBeans

	Modifying packages
	Configuring package properties
	Exporting packages to EJB-JAR files

	CHAPTER 7 Creating Enterprise JavaBean Clients
	Developing an EJB client
	Generating EJB stubs
	Java packages
	Compiling stubs

	Instantiating home interface proxies
	Obtaining an initial naming context
	Resolving Bean home names

	Instantiating remote interface proxies
	Calling remote interface methods
	Managing transactions
	Serializing and deserializing Bean proxies

	CHAPTER 8 Managing Persistent Component State
	Persistence for entity Java Beans
	Using component-managed persistence
	Using automatic persistence
	Configure Persistence tab properties
	Specify field to column mapping properties
	Specify finder-method queries

	Persistence for stateful components
	Using Java serialization
	Using automatic persistence

	Storage components
	Supported Java, IDL, and JDBC/SQL types
	Table schema for binary storage

	CHAPTER 9 Developing Applications with PowerJ and EJB Server
	About the development process
	Creating workspaces, targets, and classes
	Designing the user interface
	Designing menus
	Accessing data
	Coding application logic

	Building distributed and Web applications that use EJB Server
	About EJB Server
	Architecture of distributed and Web applications
	Building EJB Server components with PowerJ
	Implementing the component
	Transaction management
	Database access and result set management
	Connection caching
	Instance pooling

	Building a Java client for a distributed or Web application
	Compiling and deploying the Java client

	Building client/server applications using JDBC
	Building the application

	Building Enterprise JavaBeans 1.1 components

	CHAPTER 10 Configuring EJB Server
	Configuring an EJB Server
	General
	Log/Trace
	Naming Service
	Initial Context
	Naming Server
	Naming Server Strategy

	All Properties

	Configuring server stack size
	Character sets
	Shared-memory connections
	Managing connection caches
	Creating and installing a new connection cache
	Modifying connection caches
	Modifying connection cache properties
	General
	Advanced
	Other cache settings

	Connection cache refresh
	Connection cache ping

	Managing XA resources
	Setting up XA resources
	Creating XA resources
	Configuring Listeners
	Preconfigured listeners
	Listener failover

	Configuring listeners

	Replacing an EJB Server

	CHAPTER 11 EJB Server Naming Services
	How does the EJB Server naming service work?
	EJB Server initial context
	Name binding example
	Transient vs. persistent storage

	JNDI support
	JNDI J2EE features
	Environment properties
	EJB references
	Resource factory references
	UserTransaction references

	Configuring the EJB Server naming service
	Name binding password security

	Using an LDAP server with EJB Server
	LDAP object schema and EJB Server objects
	Storing EJB Server object bindings on an LDAP server

	Index

